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A Registration-Based Propagation Framework
for Automatic Whole Heart Segmentation

of Cardiac MRI
Xiahai Zhuang*, Kawal S. Rhode, Reza S. Razavi, David J. Hawkes, and Sebastien Ourselin

Abstract—Magnetic resonance (MR) imaging has become a rou-
tine modality for the determination of patient cardiac morphology.
The extraction of this information can be important for the de-
velopment of new clinical applications as well as the planning and
guidance of cardiac interventional procedures. To avoid inter- and
intra-observer variability of manual delineation, it is highly desir-
able to develop an automatic technique for whole heart segmenta-
tion of cardiac magnetic resonance images. However, automating
this process is complicated by the limited quality of acquired im-
ages and large shape variation of the heart between subjects. In
this paper, we propose a fully automatic whole heart segmentation
framework based on two new image registration algorithms: the lo-
cally affine registration method (LARM) and the free-form defor-
mations with adaptive control point status (ACPS FFDs). LARM
provides the correspondence of anatomical substructures such as
the four chambers and great vessels of the heart, while the reg-
istration using ACPS FFDs refines the local details using a con-
strained optimization scheme. We validated our proposed segmen-
tation framework on 37 cardiac MR volumes on the end-diastolic
phase, displaying a wide diversity of morphology and pathology,
and achieved a mean accuracy of 2.14 0.63 mm (rms surface
distance) and a maximal error of 4.31 mm.

Index Terms—Atlas, cardiac magnetic resonance imaging
(MRI), dynamic resampling and distance weighting interpolation
(DRAW), free-form deformations, image registration, inverse
transformation, locally affine registration, locally affine registra-
tion method (LARM), whole heart segmentation.

I. INTRODUCTION

A CCORDING to the World Health Organization [1], an es-
timated 17.5 million people died from cardiovascular dis-

eases (CVDs) in 2005, accounting for 30% of deaths around
the world. Being able to provide an early diagnosis and treat-
ment will dramatically reduce this death toll. Recent advances in
novel imaging and computing technology and their introduction
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into clinical routine have shown tremendous potential towards
achieving such an ambitious goal. Over the diverse range of
imaging modalities, cardiac magnetic resonance imaging (MRI)
is a unique technique which is ionizing radiation free and can
provide clear anatomy of the heart. Extracting the anatomical
information is the essential step for the development of clinical
applications, and obtaining reproducible and unbiased quantita-
tive measurement of the anatomy is indeed of central importance
for the success of these applications. To avoid inter- and intraob-
server variations of manual delineation, it is highly desirable to
develop an automatic technique for whole heart segmentation of
cardiac MRI.

This has been the focus of several research groups. However,
only a few studies presented whole heart segmentation, while
the majority investigated the segmentation of the ventricles of
the heart only. In the following section, we will review the state
of the art and give the motivation for developing a novel ap-
proach overcoming the current limitations.

A. Related Work

Being able to obtain an accurate segmentation of the heart
on clinical cardiac MR using only the image content has been
shown to be challenging, if not impossible, to achieve. We invite
the reader to refer to [2] for a detailed review of this topic. For
this reason, model-guided methods, incorporating prior knowl-
edge into the segmentation procedure, have been very popular.

Boundary-based segmentation using deformable models is
currently the most widely studied technique for automatically
segmenting cardiac MR images [3]–[9]. In these studies, a pre-
constructed model is deformed towards detected boundaries in
the unseen image (“unseen” meaning an image that requires seg-
mentation). The deformation is constrained by prior knowledge
of the overall shape. However, using these approaches, three
challenges are remaining in the reported studies.

• Currently reported techniques mainly define the boundary
profile using the information from a small local area of the
unseen image, such as the intensity value and intensity gra-
dient [9]. This profile can be sensitive to intensity inconsis-
tencies, coming from noise, artifacts, and intensity distri-
bution variations.

• Deformable model-based segmentation assumes that the
corresponding edge point for each local node of the model
is the optimal edge point from the searching direction,
commonly being the normal direction from the model sur-
face. This however does not guarantee a true anatomical
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correspondence, nor even a good approximation of it if the
surface of the model is not closely initialized.

• The segmentation may not naturally guarantee diffeomor-
phism, meaning a one-to-one mapping from the model to
the unseen image. This segmentation may lead to the result
where two or more surfaces from different substructures
of the heart model intersect each other. Diffeomorphism
may not be so important and could be achieved by post-
processing in some applications, but a natural guarantee of
this property could be useful in others.

Some of these limitations could be overcome by using a more
complex model, such as a statistical shape model (SSM). This
model can be built from a training set by means of principle
component analysis (PCA). By adapting the modes of the PCA
model, the boundaries of the SSM can be deformed to the unseen
image, provided that the statistical model includes a potentially
large shape variability and the model has been well initialized
to the unseen data.

Another popular approach, which can overcome some of the
described limitations, is to propagate the segmentation of an
atlas image using image registration techniques [10]. We can
classify these approaches as part of the “registration-based seg-
mentation propagation framework.” To preserve the topology of
the heart, the resultant transformation of the registration should
be diffeomorphic, which is nowadays achievable [11]–[14].
In addition, these methods have two potential advantages.
Firstly, the boundaries with low contrast or that are not clearly
discernible in the unseen images can be retrieved through the
global warping of the atlas. Secondly, by using intensity-based
similarity measures such as the mutual information (MI),
the segmentation can be less sensitive to noise, artifacts, and
different intensity distributions. The registration using MI mea-
sures, including the normalized mutual information (NMI) [15],
has shown good robustness to these intensity inconsistencies in
previous studies [15], [16].

The main difficulty of the segmentation-propagation frame-
works is to estimate the appropriate spatial mapping, namely the
resultant transformation from the registration process. Usually,
the standard registration scheme uses a global affine registration
to localize the heart, and then apply a nonrigid registration with
a transformation containing high degrees of freedom (DOFs),
such as free-form deformations (FFDs) [10], to refine the local
details. However, one common issue of the segmentation-prop-
agation and boundary-based techniques is their relative sensi-
tivity to initialization, making the algorithms less robust to large
shape variability, commonly seen when dealing with patholo-
gies.

To tackle this initialization problem, Lorenzo-Valdes et
al. built subject-specific atlases to segment the ventricles of
multiphase MR images [17]. This personalized atlas minimized
the shape variability, which improved the registration process.
However, the robustness was limited to the images acquired
from the same subject from which the subject-specific “atlas”
was constructed. Mitchell et al. described an active appearance
model (AAM) as the atlas image which had statistical informa-
tion of both shape and texture from the training set [18]. They
matched the AAM to unseen data by means of optimizing the
model coefficients, for both shape and texture modeling, by

minimizing the intensity root mean square (rms) difference.
Lotjonen et al. constructed a similar AAM for the whole heart
[19], adapting the model to short- and long-axis MR images
using a segmentation propagation framework. However, neither
of them applied constraints to guarantee that the registration
result was diffeomorphic. In addition, the issue of large shape
variability remains problematic in the training phase of the
AAM.

B. Contribution of This Work

In this paper, we propose a registration framework able to pre-
serve the topology and to deal with the large shape variability
of the heart. The core of our framework is based on two contri-
butions extending the current segmentation-propagation frame-
works, namely a Locally Affine Registration Method (LARM)
[20] and a nonrigid registration using free-form deformations
with adaptive control point status (ACPS FFDs) [21].

In the proposed scheme, LARM is applied to obtain a robust
initialization of the different substructures of the heart such
as the four chambers and the major vessels. The resultant
transformation globally deforms the atlas but locally maintains
the shape of the predefined substructures. Such an approach
is able to avoid local optima during the optimization of the
global transformation. After the initialization, ACPS FFD
registration is used to refine the local detail. Our scheme makes
advantageous use of prior knowledge to adaptively associate
each control point in the FFDs with a status, active or passive,
extending the nonuniform FFDs proposed by Schnabel et al.
[22]. This contributes to avoiding the myocardial leaking,
meaning the epicardium of the atlas is mapped to adjacent
tissues of the epicardium in the unseen image.

Furthermore, one will need an inverse transformation from
LARM to propagate the segmentation. We hence propose
a new algorithm for inverting the transformation based on
Dynamic Resampling And distance Weighting interpolation
(DRAW) [20]. DRAW is generic, i.e., widely applicable to any
diffeomorphic transformations.

In the following sections, we will demonstrate that our
segmentation-propagation framework is robust to different
pathologies and large shape variability. Section II will present
our methodological contributions in detail, while Section III
will describe the experimental setup and validation results,
using in vivo data from 37 individuals. Section IV will conclude
the paper and present some insights for potential extension of
the framework.

II. METHODOLOGY

The methodology is presented in this section as follows. Sec-
tion II-A introduces the LARM. Section II-B presents ACPS
FFD registration. Section II-C elaborates on the DRAW algo-
rithm for inverting transformations. Section II-D describes the
atlas construction and provides the automatic whole heart seg-
mentation framework.

A. LARM: Locally Affine Registration Method

Registration using locally affine transformations is an at-
tractive registration alternative for applications where a single
global affine transformation cannot provide enough accuracy,
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while a nonrigid registration would incorrectly affect the local
topology due to the large shape variability of the heart anatomy
[23]–[26]. An affine transformation is also challenged to pro-
vide a good initialization of substructures of the heart for a
nonrigid registration with high degrees of freedom (DOFs).
Locally affine registration method (LARM), which assigns a
local affine transformation to each substructure such as the four
chambers and great vessels, can further initialize the image
pair after a global affine registration has been achieved. This
initialization is crucial to achieve a robust registration of the
following nonrigid registration to maintain the local topology
in intersubject cases.

Arsigny et al. developed an elegant framework for the fusion
of a set of local affine transformations and applied it to the regis-
tration of histological slices [24]. The similarity measure in the
work was the sum of square differences which is not designed
for the images with significantly different intensity distributions
such as cardiac MRI. Based on [24], Commowick et al. fur-
ther developed an efficient locally affine framework, where the
local affine transformations can be optimized separately [26].
The separate optimization however could affect the registration
robustness due to the loss of global intensity linkage between
local regions. In this work, we propose a new method, referred
to as LARM, which uses MI or NMI as the global cost function
and optimize the affine transformations within a global scheme.
LARM confines the driving forces of the local affine transfor-
mation parameters to local regions to improve the efficiency and
effectiveness of the computation, but it also provides the func-
tion to maintain the intensity linkage based on the global joint
histogram table.

Let be the set of predefined local regions which have
a minimal distance between each other; let be the set of
the assigned local affine transformations. To achieve a global
non-linear transformation from , a direct fusion based
on the distance weighting interpolation [23], [27] is used

(1)

where is a normalized weighting factor related to the dis-
tance between point and region

(2)

where controls the locality of affine transformations. We use
2 for in our implementation following the recommendation
in [27] for computational efficiency. In this transformation
model, a global affine transformation can also be assigned to
the boundary of the region of interest (ROI).

However, there are two situations that can cause nondiffeo-
morphism by this direct fusion. Firstly, the local regions can
overlap each other after the individual transformations. To guar-
antee nonoverlapping, a correction of the local regions is re-
quired during the registration

(3)

where is the volume of other local re-
gions that should not overlap after transformations. is the
morphology dilation with length , 10 mm in our implementa-
tion for the cardiac MR application, to leave enough space for
the interpolation. It should be noted when are all identity
transformations such as at the beginning of registration, the cor-
rection using (3) also guarantees that there is at least distance
between each local region.

Secondly, when the displacements of the local transforma-
tions are large, the direct fusion using (1) can produce folding
[24]. A regularization step monitoring the Jacobian of the
deformation field is then needed

(4)

If the determinant of the Jacobian, , drops below a
threshold (e.g., ), a new image-pair is then
generated from the original one using the current deformation
field and the locally affine transformation model is reset to
identity for a new optimization process. Therefore, the resultant
transformation of the registration is a concatenation of the
series of transformations

(5)

Since all the are diffeomorphic, the composed
should keep this property as well.
The derivative of MI or NMI can be obtained from the op-

eration of the entropy derivatives, which can be computed from
the derivative of the probability distribution function (PDF). Let

be a joint histogram bin from the reference image and
floating image , be the kernel density estimation function,
the derivative of joint PDF
against a transformation parameter of is

(6)

If , then .
Given a volume and its complementary volume , we can

rewrite the joint PDF as , where
and . Therefore, the

derivative of the entropy becomes

(7)

where and
. Let be a

superset volume of such that when one or both of
the following two conditions can be met: one is that
and the other is that is within the background which is not of
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Fig. 1. Pseudo-code of the proposed LARM.

the interest of the registration. Let , then is summa-
rized from the contribution of either relatively negligible small
forces or less relevant forces coming from the background.
Therefore, the derivative which represents the driving force is
approximated as

(8)

Since , preserving the global intensity linkage,
is constant for the transformation parameters, the computation
complexity of (8) is only , which compares with

for (7), where is the volume of the reference image.
In the whole heart segmentation experiments in Section III, we
empirically compute as where mm. (8)
not only accelerates the runtime, but also blocks driving forces
coming from the background such as the liver and abdomen,
where the shape and intensity across subjects vary more signif-
icantly. Fig. 1 outlines the framework of the proposed LARM
and describes the pseudo-code of our implementation.

B. Adaptive Control Point Status Free-Form Deformations

Since LARM provides an initialization for substructures, a
refinement is needed to achieve an accurate registration. This
step can be done by a nonrigid registration with high DOFs, such
as using FFDs [16]. Also, FFD registration can be diffeomorphic
by using a concatenation scheme introduced in [12].

Schnabel et al. proposed to associate a status, active or
passive, to each control point of a FFD mesh to simulate the
nonuniform rational B-splines (NURBS) [22]. Such status is
priorly computed before optimizing the FFDs, using either the
reference image measures such as local entropy, or the joint
image pair measures such as the gradient of the associated cost
function. Also, the status stays constant during the registration
process. This method, embedded into a multiresolution reg-
istration scheme, improved the performance and significantly
reduced the runtime compared to a standard FFD registration
scheme [22].

However, there are two potential challenges in terms of ap-
plying it to cardiac MR image registration.

Firstly, in the context of cardiac MR image segmentation, the
background of the image includes the adjacent tissues of the

Fig. 2. Registration of an ellipse, the reference image and a circle, the floating
image using adaptive control point status FFDs. The white dots in the image of
middle (a) are special control points explained in the text. (b) FFD meshes, the
contour of the ellipse, and the contour of the inverse-transformed floating image.
The black dots are activated control points. The arrows demonstrate the regis-
tration driving forces and no arrow means a convergence of the registration. (c)
Floating image inversely transformed into the reference space at different reg-
istration steps. (d) Deformed FFD meshes at different registration steps whose
concatenation gives the resultant transformation.

heart such as the lung and the liver which are not of interest
for segmentation. The background should not deteriorate the
registration process such as reducing the accuracy. However,
using the status setting in [22], these areas will be taken into
account, because they present the anatomical information of the
background for the status determination measures.

Secondly, if the status is preset and remains constant, some
control points could be inactivated, leading to significantly
decreasing the modeling ability of the FFDs. For example, as
shown in Fig. 2, the control points around the contour of the
ellipse [white dots in middle row of (a)] will not be activated
by using the proposed measures in [22]. This is because the
local supports of these control points are mapped to the regions
with uniform intensity values in the floating image, where the
intensity gradient is low. Only the control points mapped to the
boundary of the circle in the floating image will be activated, as
the black dots shown in Fig. 2(b). If the status is not adaptively
updated, the ellipse in the reference image will not be able to
deform appropriately to match the circle in the floating image.

To account for these two challenges, we propose to set the
status of control points adaptively for each registration itera-
tion, i.e., adaptive control point status (ACPS). As shown in
Fig. 2(c), after iterations, the floating image is inversely
transformed into , in the coordinate of the reference image
space, referred to as reference space. Then, the status of the
control points should be updated based on the updated infor-
mation from given the shape of the floating image is priorly
known, as shown in Fig. 2(b). Based on this idea, we extend the
status-setting as follows:

if
if

(9)
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Fig. 3. DRAW using inverse distance interpolation from forwardly transformed scatter points (a); resampling more points within a pixel when the transformation
field causes expansion (b); resampling more points in other directions when the transformation field causes anisotropic contraction in one direction (c).

where is the coordinate of control point and is a mask
image generated based on the prior knowledge. For example, to
avoid the effects caused from the background, is chosen to
solely cover the region of interest of the registration.

Since the segmentation of the atlas is priorly known, this
status-setting fits well into the registration task required in the
refinement of the segmentation. The mask images, , are
chosen to avoid activating control points in the adjacent tis-
sues with indistinct boundaries, leading to an improvement of
the registration robustness. Also, similar to LARM, the regis-
tration using ACPS FFDs can significantly reduce the computa-
tion time, because the optimization does not compute the driving
forces (derivatives of cost function) for a large number of pas-
sive control points locating in background areas.

C. DRAW: Dynamic Resampling and Distance Weighting
Interpolation

LARM requires a predefinition of the local regions in the
reference image. However, in this segmentation propagation
framework, the prior definition is only available from the
floating image, the atlas. In this case, a method is required
to compute an inverse transformation from the result of the
LARM process where the atlas is defined as the reference
image. Currently reported methods have difficulties in control-
ling the maximal error when the deformation field contains
large displacements [28]. In this section, we propose a new
algorithm for inverting general dense displacements, based on
Dynamic Resampling And distance Weighting interpolation
(DRAW) [20].

Let be a diffeomorphic transformation, mapping a coor-
dinate in the reference image, reference space, to a coordi-
nate in the floating image, i.e., . To compute the
inverse transformation of , one can directly interpolate

for using the scatter points [28]. Given , a
set of close scatter points of as the four green dots shown in
Fig. 3(a) right, the interpolated inverse transformation is
computed as

(10)

where are transformed by from the point set in the
reference space and is the normalized weighting function
computed from the distance between and [refer to (2)]. It is
assumed that an accurate estimation can be achieved given that
the two conditions stand (for simplicity pixel is used for both
2-D and 3-D image elements).

• Condition 1: One closest point can be found from each
octant (3-D) or quadrant (2-D) of within one pixel size.

• Condition 2: The should be transformed from the
scatter points which are all within the volume of one
pixel size.

As shown in Fig. 3(a), the inverse transformation of point , the
red dot in the floating image, can be interpolated from its neigh-
boring green dots that are transformed from the green dots

in the reference image. In a diffeomorphic transformation
field , the ground truth and the interpolated inverse
transformation should be both within the volume enclosed
by , the red area in Fig. 3(a). Therefore, the interpolation
error should not be larger than the diameter of
the enclosed volume. However, two situations make it difficult
to meet these two conditions.

Firstly, if contains dilation then the scatter points
can be too distant from as shown in Fig. 3(b). When

causes dilation at a volume enclosed by vertex points
(green dots in the reference image), will be

sparsely transformed into a bigger area in the floating
image space, where a grid point lies. In this case, one
may not be able to find any of the sparse points required
in Condition 1 for the interpolation of . To obtain
this point set, we propose to resample more points within

and transform them to the floating image space, as
shown in Fig. 3(b). The number of resampled points, ,
is estimated as

(11)

where is the Jacobian matrix of and
. represents the volume change in the direction of

, where is the standard Euclidean basis.
Secondly, if contains anisotropic contractions, then the
scatter points may not be within one pixel size in the
reference image space, as shown in Fig. 3(c). When trans-
formation causes local anisotropic contractions, such
that , the closest scatter points of

and their corresponding points would be these green
dots shown in Fig. 3(c). This however violates Condition 2,
because are not within one pixel size. To improve this
situation, we propose to resample more points in the other
orthogonal directions inside to provide a closer scatter
point set and a corresponding point set which are
from the area within a pixel size
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Fig. 4. Inverse-consistency errors of DRAW in generic displacement fields
(left) and anisotropic scalings (right).

(12)
To combine (11) and (12), one can get the number of resample

points needed from the volume of a pixel

(13)

To assess the accuracy of DRAW, we used an image with an
isotropic voxel size of 0.5 mm to generate displacement fields.
We first created a small local rigid box region at the center of
the image which was rotated. The boundaries of the image were
fixed. By rotating the box from 5 to 85 using (1) for interpola-
tion, we generated a set of generic displacement fields. Then, we
generated a set of anisotropic-scaling transformations by scaling
up the image along one direction (X axis) from 1.5 to 4.5 times
(the magnitudes of transformations are from 6 to 36 mm) and
scale down (along X axis) the image from 1/0.9 to 1/0.2 times
(3 to 8 mm). Inverse-consistency (IC) was com-
puted as the error. Fig. 4 (left) shows the IC errors of inverting
the first set of displacement fields with respect to their magni-
tudes, while Fig. 4 (right) gives the errors of inverting the scaling
fields. All the maximal IC errors in the two studies are subvoxel
(less than 0.5 mm).

D. Segmentation Framework and Choice of Atlas

Segmentation Framework: The segmentation framework,
registering the atlas to unseen images for segmentation propa-
gation as illustrated in Fig. 5, includes three registration steps
as follows.

• Firstly, a global affine registration is applied to localize
the heart. This localization is generally a challenging step
to achieve full automation in cardiac MR segmentation
[9], [29]. The affine registration worked well here because
the MR data were acquired with similar orientations and
fields-of-view. Fig. 6 (left) shows an example image. In
the affine registration, we first employed the whole infor-
mation of the images for a coarse localization, including
the surrounding structures of the heart such as the back,
chest, and liver tissues. Then, we used a mask covering the
region within 20 mm to the heart of the atlas to focus on
registering the heart structure.

Fig. 5. The framework of automatic whole heart segmentation based on atlas
propagation.

• Then, LARM is used to further initialize the substructures.
Three stages of LARM registration are adopted in practice,
where two, four, and seven local affine transformations are
used, respectively.
In the first stage, only two local affine transformations
are used. The corresponding local regions are atrial re-
gion which includes the two atria and great vessels, and
ventricular region which includes the two ventricles and
myocardium. In the second stage, the right ventricle and
the right atrium are separated from the regions defined
in the first stage to include another two affine transfor-
mations. Finally, seven local regions, including two ven-
tricles, two atria, pulmonary artery, ascending aorta and
aortic arch, and descending aorta, are used to achieve a
seven-local-affine LARM.
As the atlas image needs to be defined in the reference
image in LARM, the resultant transformation of LARM
is inverted using DRAW to get the transformation defined
from the unseen MR image to the atlas.

• Finally, registration using ACPS FFDs is employed to re-
fine the local detail. In the status-setting, two mask images,

and , both priorly constructed from the atlas, are
used.
Firstly, the registration uses to solely activate the con-
trol points which map onto the blood pool of the atlas. This
registration mainly contributes to the alignment of the en-
docardial surfaces where the boundaries are normally dis-
tinct, and the FFDs use isotropic B-spline meshes with a
spacing of 20 mm.
Secondly, the registration employs to activate the con-
trol points which map to a neighboring region of the en-
docardial and epicardial surfaces. This step fine-tunes the
registration of whole heart surfaces and uses finer B-spline
meshes with a spacing of 10 mm.

The registration implementation employs NMI [15] as the
similarity measure. The optimization adopts the gradient ascent
scheme with decreasing step length [30] and the multiresolution
scheme [31]. The registration stops when the NMI measure has
not be improved in the last five steps.

Atlas: Atlas construction is a different topic outside the scope
of this work, especially when involving the statistical shape
modeling [32]. In this work, we use a simple atlas, without sta-
tistical shape information, because it is assumed that the ex-
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Fig. 6. Left: an atlas intensity (MR) image using a reference space of the mean
shape of 10 volunteer data. Right: corresponding segmentation, atlas label image
of the atlas intensity image. Images are shown in sagittal, transverse, and coro-
nary views.

isting statistical shape models could not perform better than a
simple atlas when applied to new pathologies. As the goal of
this work is to develop a tool which is applicable to all patholo-
gies, a simple atlas is employed to test the performance of the
proposed approach. This atlas can be built from a selected ref-
erence space such as the mean of a group of images or a space
defined by any single cardiac MR case.

Theoretically, one can use a MR image and its corresponding
segmentation as the atlas for propagation. However, in prac-
tice the noise and artifacts presented in a specific case can lead
to segmentation bias in all cases. To avoid this, we employ a
number of MR images acquired using the same MRI sequence.
They are then registered to a selected reference space. A mean
intensity image, referred to as atlas intensity image, can be com-
puted from this set of registered MR images. The labeling of
each anatomical region of the reference space has the corre-
sponding segmentation information of the atlas, referred to as
atlas label image. Fig. 6 shows an atlas case that will be used in
our experiments.

To achieve the registration of this set of MR images, we first
label each anatomical substructure of the images, including the
blood pools of each chamber and great vessel and left ventricle
myocardium. Fig. 6 (right) shows a label image which is the
label image of an atlas. The label images are not only the cor-
responding segmentation of the MR images, but also with a
uniform intensity value for each substructure. The deformation
fields to register the MR images can be computed from the reg-
istration results of the corresponding label images by using the
following steps.

• A global affine registration to localize the heart structure.
• LARM to further initialize the seven substructures.
• A fluid registration using the sum squared difference of

intensity as the similarity measure [11] to finally fine-tune
the local detail.

III. EXPERIMENTS

Three steps have been done to demonstrate the performance
of the proposed segmentation framework. Section III-A de-
scribes the data and the experimental setup. Section III-B
compares the segmentation results using three different atlases
for propagation. Section III-C demonstrates the improvements
by using the proposed algorithms, compared with the alter-
native techniques. Section III-D analyzes the segmentation
performance of the proposed segmentation framework and
performs the validation in detail.

TABLE I
PARAMETERS OF THE MRI SEQUENCE

A. Experimental Setup

Data: The cardiac MRI sequence used in the experiment was
the balanced steady state free precession (b-SSFP) for whole
heart imaging [33]. The imaging was either two (dual phases)
or one (end diastolic phase) trigger delay(s). A 3-D triggering
b-SSFP turbo field echo (TFE) sequence, with arrhythmia rejec-
tion, was modified in order to enable the acquisition of selected
cardiac phases at a user defined time. The sequence was imple-
mented on a 1.5 T clinical scanner (Philips Healthcare, Best,
The Netherlands) equipped with 32 independent receive chan-
nels. For both cardiac phases a fat saturation and T2 preparation
pulses (14) were used to null fat and to increase the contrast
between blood and cardiac muscle. A free breathing scan was
realized by enabling one navigator beam before data acquisition
for each cardiac phase. The detail parameters are presented in
Table I. The application of this sequence and comparisons to
other routinely used MRI sequences are available in [34].

A test dataset of 37 cardiac MR volumes on the end-diastolic
phase is used as unseen images in our experiments, among
which nineteen cases have confirmed pathologies including my-
ocardium infarction, atrial fibrillation, tricuspid regurgitation,
aortic valve stenosis, Alagille syndrome, Williams syndrome,
dilated cardiomyopathy, aortic coarctation, and Tetralogy of
Fallot which induces a number of different forms of morpho-
logical abnormalities. It is common to see that many of these
patients had symptoms of a combination of more than one of
these pathologies. The subjects, aged from 5 to 80, displayed a
wide diversity of heart shapes. To avoid the advantageous bias
of using an atlas with similar heart shape to segment the unseen
data, we acquired a training dataset of images from 10 separate
healthy volunteers for the construction of the atlas.

All these data have manual segmentation as the gold stan-
dard.They were either done by fitting a deformable mesh model
[9] with manual corrections or using the semi-automatic editing
tool in the commercial product Analyze (Mayo Clinic). The
manual segmentation was completed by either a clinician or a
research associate with knowledge of heart anatomy. For the
test dataset, the blood cavities of the four chambers and the
myocardium of the left ventricle are separately segmented (ex-
amples of manual segmentation can be found in Figs. 8 and 9),
while for the training dataset, in addition to these regions,
the pulmonary artery, ascending aorta and aortic arch, and
descending aorta are also separately delineated for the atlas
construction registration. Fig. 6 (right) shows an example of
these substructure labels.
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Evaluation Protocols: Two different types of measures can
be used to evaluate the accuracy of a segmentation result: the
surface distance measures and the volume measures.

The surface measures compute the surface-to-surface dis-
tance between the propagated segmentation and the gold
standard segmentation. This surface distance is calculated
using each surface point from the propagated segmenta-
tion to the triangle defined by the three closest surface points

of in the gold standard segmentation. The
mean surface distance, , standard deviation, , and the
rms, of a surface will be computed. Six surfaces will be
considered.

1) The endocardial surface of the left ventricle, referred to as
Left Ventricle.

2) The endocardial surface of the left atrium, referred to as
Left Atrium.

3) The endocardial surface of the right ventricle, referred to
as Right Ventricle.

4) The endocardial surface of the right atrium, referred to as
Right Atrium.

5) The epicardial surfaces of the left ventricles, referred to as
Epicardium.

6) The inclusion of all the five surfaces above as a whole heart
segmentation accuracy, referred to as Whole Heart.

Volume measurement is of major interest in many clinical ap-
plications such as computing stroke volume, ejection fraction
and myocardium mass. Three widely used measures will be em-
ployed in our validation, including:

• [35];
• [36];
•

;
where and denote the volumes from the propagated
segmentation and gold standard, respectively. Both Dice and
volume overlap indicate how well the two volumes are over-
lapped, with maximum 1 meaning perfect overlap and minimum
0 indicating no overlap at all. Five substructures will be mea-
sured, as follows.

1) The blood cavity of left ventricle, referred to as Left Ven-
tricle.

2) The blood cavity of left atrium, referred to as Left Atrium.
3) The blood cavity of right ventricle, referred to as Right

Ventricle.
4) The blood cavity of right atrium, referred to as Right

Atrium.
5) The myocardium of left ventricle, including septum, re-

ferred to as Myocardium.
Three Steps of Evaluation:

Step-one: This step uses the 19 pathological data as a test
dataset to assess the sensitivity of the proposed approach to dif-
ferent atlases. Section II-D provides detail of the atlas construc-
tion. Three atlases are tested, whose reference shapes are based
on the following.

• A healthy volunteer is randomly selected from the training
dataset as the reference shape, referred to as One Shape.

• The mean shape of five randomly selected training data is
used as the reference shape, referred to as Five Shapes. The
mean of five shapes was computed based on the iterative
atlas construction [32]. The registration in our construction

Fig. 7. The individual plots and the Box-and-Whisker diagrams of the Whole
Heart segmentation errors using the rms surface-to-surface error measure, � .
Left: the errors of the 19 pathological cases using the proposed segmentation
approach combined with the three different atlases. Right: the errors of the 37
cases using the three different segmentation frameworks.

employs the five corresponding label images and the three
transformation models introduced in the atlas construction,
described in Section II-D.

• The mean shape of all the ten volunteer data is used as the
reference shape, referred to as Ten Shapes. Fig. 6 shows the
result of this atlas.
Step-two: This step assesses the improvement of the pro-

posed two registration algorithms when applied to the segmen-
tation framework. The atlas used is the Ten Shapes. Three reg-
istration frameworks, for the segmentation propagation, will be
used to segment the test dataset of 37 cases, including the fol-
lowing.

• A single affine for global localization and a traditional
FFDs [12] for refinement, referred to as Affine_FFDs.

• A single affine for global localization, then LARM for sub-
structure initialization, finally traditional FFDs for refine-
ment, referred to as LARM_FFDs.

• The proposed framework, a single affine for global local-
ization, then LARM for substructure initialization, finally
a registration using ACPS FFDs for refinement, referred to
as LARM_ACPS.

All FFD registration used the multiresolution meshes [22],
spacing from isotropic 20 mm to 10 mm, and the concatenation
strategy [12] to maintain the diffeomorphism.

Step-three: Finally, we focus on the segmentation results
of the 37 test data using the proposed segmentation framework
and the atlas of Ten Shapes.

B. Sensitivity to Different Atlases

Fig. 7 (left) plots the rms surface distance errors of all the
19 pathological cases. The mean and standard deviation of the
corresponding errors are as follows:

• using One Shape atlas: 2.63 0.70 (mm);
• using Five shape atlas: 2.47 0.57 (mm);
• using Ten shape atlas: 2.47 0.61 (mm).
Both the Box-and-Whisker diagram and figures from mean

and standard deviation show that the segmentation using the
atlas of Five Shapes had the best result while using the atlas
One Shape had the worst. However, the differences between
the mean and median numbers are all less than 0.2 mm. To as-
sess the significance of the performance difference, the two-tail,
paired student t-test [37] was used: (between
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TABLE II
SURFACE-TO-SURFACE SEGMENTATION ERRORS IN MILLIMETERS, � OF THE THREE METHODS AND ERRORS � , � ,

AND PERCENTAGE WITH DIFFERENT RANGES: �2 mm, 2–5 mm, AND �5 mm, OF THE 37 CASES BY THE PROPOSED APPROACH

the One Shape and the Five Shapes), (between
the One Shape and Ten Shapes), and (between
the Five Shapes and the Ten Shapes). There was no strong ev-
idence to show significant difference between each population
using a significance level of 0.05. However, both and
were also close to the significance level. We then further com-
puted the 0.95 confidence interval of them, which were

mm and mm respectively.
This showed there were small biases of the One Shape popula-
tion with respective to the other two, but these biases were not
practically important. In addition, the Pearson correlation coef-
ficients are , , and ,
respectively. The errors of each category are assumed to have a
Gaussian distribution in the t-test.

In conclusion, the atlas constructed based on the shape of
one subject could lead to a performance bias, but no evidence
showed that the segmentation of pathological data could be sig-
nificantly different by using an atlas from the mean shape of a
training set that has a larger number of healthy volunteer data.

C. Performance Using Alternative Techniques

Table II displays the rms surface-to-surface segmentation er-
rors of each substructure and all the surfaces as the Whole Heart
measure of the three different registration frameworks. From
the Affine_FFDs to the LARM_FFDs, the errors in all cate-
gories were improved, especially the maximal errors. This seg-
mentation was furthermore improved by the LARM_ACPS. The
P-values of the Whole Heart rms surface distance errors using
the one-tail, paired t-test, assuming nonimprovement:

• test the Affine_FFDs against the LARM_FFDs:
;

• test the LARM_FFDs against the LARM_ACPS:
;

• test the Affine_FFDs against the LARM_ACPS:
.

These P-values suggested strong evidence to reject the null-hy-
pothesis, thus the segmentation had been improved by the
two proposed techniques with statistical significance. This
also agrees with the mean and standard deviation of the
in Table II where the Whole Heart of LARM_ACPS, 2.14
0.63 mm, had been improved about three times of the standard
deviation (0.63) from that of Affine_FFDs, 3.96 3.23 mm.

Furthermore, Fig. 7 (right) plots the errors of the Whole
Heart measure. About two thirds of the segmentation results
by the three methods had similar error figures, while the “bad”
cases differed significantly: By using LARM, the four outliers
in the Affine_FFDs were improved to less than 9 mm in the

LARM_FFDs, while by further using ACPS FFDs, the three
outliers in the LARM_FFDs were improved to less than 4.5
mm.

Finally, Fig. 8 displays the three worst segmentation cases
of the three segmentation methods and their corresponding seg-
mentation results by these three methods and the gold standard
segmentation:

• Subject-1, with a Whole Heart error of 14.2 mm, is the
worst case of the Affine_FFDs. This was from a pa-
tient with severe right ventricle and atrium hypertrophy.
A global affine registration did not well initialize the
substructures and this induced a misalignment of the
two ventricles: a large part of the right ventricle was
segmented as the left ventricle. However, LARM well
compensated this problem and corrected the segmentation
of the two ventricles as the results of the LARM_FFDs and
LARM_ACPS shown in Fig. 8.

• Subject-116, with a Whole Heart error of 8.93 mm, is the
worst case of the LARM_FFDs. This was from a healthy
volunteer case, but the image quality was very low. The
traditional FFDs without constraints from prior knowledge
produced an unrealistic deformation field and resulted in
an erroneous result, while the ACPS FFDs contributed to
reducing this error.

• Subject-9, with a Whole Heart error of 4.31 mm, is the
worst case of the LARM_ACPS. This case was also the
worst result of the LARM_ACPS in terms of the error mea-
sure for the left atrium (7.33 mm), right ventricle (4.05
mm), and right atrium (5.74 mm). The large error of right
ventricle was mainly due to the inconsistent delineation
of the cutting boundaries of chordae tendineae, papillary
muscle, and trabeculae carnae between the gold standard
and propagated segmentations. The error of atria was at-
tributed to the fact that the propagated segmentation in-
cluded parts of adjacent veins into the volume of atria, es-
pecially the left atrium, while by contrast, the gold standard
segmentation did not include them.

D. Performance of the Proposed Framework

Table II lists the surface-to-surface errors of the proposed seg-
mentation method for each surface category. The rms error (and
its maximum in the 37 cases), the mean error, the standard devia-
tion, and the percentage of error ranges are presented. For an av-
erage whole heart segmentation, more than 95% surface-to-sur-
face error is within 5 mm.

Fig. 10 plots all the errors and Box-and-Whisker diagrams
of the 37 cases. It agrees with the results in Table II that the
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Fig. 8. The three worst cases by the three segmentation methods. Subject-1 is the worst case of the Affine_FFDs, subject-116 is the worst case of LARM_FFDs, and
subject-9 is the worst case of LARM_ACPS. Images are displayed with delineated contour superimposing on the MR images, in sagittal, transverse, and coronary
views. Subject-1 and subject-9 are pathological cases while subject-116 is a healthy case.

segmentation of the Left Ventricle was better than other sur-
face categories. The worst case of the Left Ventricle was sub-
ject-119, from a healthy volunteer, with a rms surface error of
2.38 mm; the worst case of the Epicardium was subject-43,
from a Tetralogy of Fallot patient, with a rms surface error of
5.43 mm. The segmentation by the proposed method and the
gold standard segmentation are shown in Fig. 9. The worst seg-
mentation of other surface categories was from one case, sub-
ject-9, shown in Fig. 8.

Finally, Fig. 11 shows the color map of surface-to-surface er-
rors of the whole heart segmentation. One can realize from this
map that the big errors were mainly distributed to the area of
connections between substructures. For example, the area be-
tween the right ventricle and pulmonary artery was one of the
worst regions. Similar situation was found in the areas between
the left atrium and pulmonary veins and left auricula. The pro-
posed method also had a moderate error range in a small part of
the endocardium of the right ventricle. This was because there
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Fig. 9. Three segmentation cases. Images are displayed with delineated contour superimposing on the MR images, in four-chamber (top) and short-axis (bottom)
views. Subject-119 is a healthy case while subject-10 and subject-43 are pathological cases. The Whole Heart segmentation errors �� � for each subject are 2.39
mm, 3.17 mm, and 2.86 mm, respectively. GD: gold standard segmentation; PS: propagated segmentation.

Fig. 10. The individual plots and the Box-and-Whisker diagrams of the seg-
mentation errors using the rms surface distance measure, � . This figure gives
the errors of each substructures as well as the Whole Heart from the 37 cases,
by the proposed segmentation framework.

were many pathological cases which developed thick right ven-
tricle myocardium, while the atlas image did not include such
myocardium. The segmentation therefore could wrongly seg-
ment part of the myocardium into the right ventricle blood cavity
due to this ambiguity. Examples of this error can be found in
cases of subject-1 and subject-9 in Fig. 8.

Table III presents the mean segmentation errors and their
worst cases in volume measures. The average of all the sub-
structures were 0.84 0.05 (Dice measure), 0.73 0.07
(volume overlap), and (9.1 7.2)% (volume difference),
respectively. The worst cases for each substructure using Dice
measure were subject-116 (Left Ventricle), subject-9 (Left
Atrium), subject-10 (Right Ventricle and Right Atrium), and
subject-43 (Myocardium). The segmentation of subject-116
and subject-9 are displayed in Fig. 8 and that of subject-10 and
subject-43 are shown in Fig. 9.

Table III shows no significant difference between the vol-
umes of the gold standard and the propagated segmentation for
the Left Atrium , the Right Atrium ,

Fig. 11. Two views showing the error map of surface-to-surface distance for
the whole heart segmentation by the proposed method. This paper has supple-
mentary downloadable material available at http://ieeexplore.ieee.org, provided
by the authors. Please refer to the web version of this article for interpretation
of the color map.

the Myocardium . However, the difference was
found for the Left Ventricle and the Right Ven-
tricle . This was due to biases of the segmented
volumes, shown in their confidence intervals. Fig. 12 shows the
Bland–Altman plots of the volumes, which confirms that both
the Left Ventricle and the Right Ventricle had segmentation bi-
ases of 4.3 mL and 6.2 mL, respectively. The larger bias of
Right Ventricle was partly due to the inconsistent definition of
the valves between the gold standard and the propagated seg-
mentation, as the Right Atrium had 2.6 mL segmentation bias.
These biases are practically negligible in many applications,
considering the ranges of their volumes were 67–204 mL and
65–488 mL. The bias for all the segmentation of substructures
was 1.70 mL. Finally, their Pearson correlation coefficients are
also given in Table III.

IV. DISCUSSION AND CONCLUSION

The majority of previous studies in the literature reported
mean surface distance around 1.5–3.0 mm for ventricle
segmentation. In recent works, Lynch et al. [38] achieved 1.25

1.34 mm for ventricle segmentation of cine MR data using
level-set. Koikkalainen et al. [8] investigated several artificial
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TABLE III
SEGMENTATION ERRORS BY THE PROPOSED METHOD USING VOLUME MEASURES: DICE COEFFICIENT, VOLUME OVERLAP, PERCENTAGE

OF VOLUME DIFFERENCE (DIFF), P VALUE AND 0.95 CONFIDENCE INTERVAL (CI), OF UNIT mL, AND PEARSON CORRELATION ���

Fig. 12. Bland–Altman plots of the propagated segmented volumes by the proposed method and the gold standard segmentation volumes. Middle line is the bias
(mean), upper and lower lines are 2 standard deviations.

enlargement methods of training sets for statistical shape mod-
eling and compared their performance in whole heart segmen-
tation of MR data. The best result reported was 2.06 0.58 mm
(mean surface distance). Cocosco et al. [39] validated their seg-
mentation results using regression of segmented volumes and
reported (left ventricle) and (right
ventricle). Kurkure et al. [29] reported a mean Dice number
of 0.855 0.123 for ventricle segmentation from cine cardiac
MR images. van Assen et al. [7] presented a semiautomatic
method using a 3-D active shape model driven by fuzzy infer-
ence. They reported mean surface distance errors of 1.72 mm
(endocardium) and 1.55 mm (epicardium) for ventricle segmen-
tation of short-axis 3-D MR data from 15 healthy subjects. Fi-
nally, Peters et al. [9] achieved 0.76 0.30 mean surface dis-
tance error for the whole heart segmentation, which is the best
result reported to our knowledge. Their method was based on
a deformable model trained with statistical shape information.
However, the validation was not independent, as the meshes of
gold standard segmentation came from the same mesh model
of their segmentation tool with manual correction. Furthermore,
the test data they used had the same or similar pathology. There-
fore, an objective interwork comparison would be difficult.

We have presented a registration-based segmentation propa-
gation framework and tested the performance using a dataset

involving nine different pathologies. We showed that no sig-
nificant difference was found by using the three atlases con-
structed from training sets of healthy subjects to segment the
pathological cases. Additionally, we showed that the segmenta-
tion errors had been significantly reduced by the two proposed
registration algorithms: the proposed locally affine registration
method (LARM) for substructure initialization and the proposed
free-form deformations registration with adaptive control point
status (ACPS FFDs) for refinement of local details. The pro-
posed segmentation framework chieved a rms surface-to-sur-
face error of 2.14 0.63 mm and a Dice measure of 0.84
0.05 between the propagated segmentation and the gold stan-
dard segmentation.

There are three limitations of this work. Firstly, using the in-
tensity-based registration it is difficult to consider the thin re-
gions which can be critical in separating substructures in some
cases. For example, the thin membrane between epicardium and
liver or the thin atrial wall between the two atria can be dis-
played as a thin region whose intensity significantly differs from
its neighboring regions. However, the intensity-based registra-
tion may fail to incorporate this information due to their rela-
tively small sizes. Secondly, the propagation can have a big vari-
ation in the delineation of the valves. Finally, this approach takes
relatively longer computation time to finish, 2–4 h per volume,
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Fig. 13. The short-axis and long-axis views of two segmentation examples
from a short-axis multislice image (left) and a long-axis multislice image (right).

Fig. 14. Segmentation using single mean atlas and multiatlas propagation.

compared to the deformable model-based, boundary-searching
techniques.

In our future work, compensative techniques will be consid-
ered to deal with these three problems. The boundary-searching
technique will be incorporated to improve the first limitation. A
flat plane positioned by some landmarks will be used to achieve
the consistent definition of valves. For example, the plane de-
fined by the basal myocardium of the left ventricle can define
the mitral valve. For the run time, the parallel computation such
as using graphic processing units will be used to accelerate the
segmentation process.

A large number of cardiac MR segmentation studies in the lit-
erature were performed using the multislice images which are
more routinely used for cardiology studies. Fig. 13 shows two
examples of segmentation using the same tool in Section III-D
on short-axis and long-axis data. In the future, we will investi-
gate the segmentation of cine multislice MR data and validate
the performance on cine data.

Multiatlas propagation and segmentation (MAPS) is a useful
strategy [40] to improve the atlas-based segmentation. How-
ever, standard MAPS employs the original intensity images as
the atlases for propagation, often with a selection strategy to
use the best ranked atlases [40]. Artifacts in cardiac MR may
create large errors to dramatically deteriorate the propagation
registration performance. For example, Fig. 14 shows the
mean Dice score of the five substructure segmentation using
the proposed method and the standard MAPS. The test data
were 21 cardiac MR images with all local regions segmented
[Fig. 6 (right)] such that each of them can be used as an atlas
for MAPS using LARM_ACPS registration for propagation.
We employed the leave-one-out strategy where 20 MR images
were used as the training data for computing the atlas intensity
image in the proposed method or as the atlas set in MAPS. We

ranked the segmentation results using the NMI similarity of the
region of interest after the propagation registration and fused
the multiple labels using the “vote rule” [41]. Fig. 14 shows that
MAPS achieved similar Dice scores as the proposed method
after fusing more than 8 classifiers and the best result of MAPS
was 0.8974, a very small gain of accuracy compared to 0.8943
of the proposed method. In the future, we will investigate
techniques to maximize the gain of accuracy using multiple
classifier strategy.
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