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Purpose: Cardiac computed tomography (CT) is widely used in clinical diagnosis of cardiovascular
diseases. Whole heart segmentation (WHS) plays a vital role in developing new clinical applications
of cardiac CT. However, the shape and appearance of the heart can vary greatly across different
scans, making the automatic segmentation particularly challenging. The objective of this work is to
develop and evaluate a multiatlas segmentation (MAS) scheme using a new atlas ranking and selection
algorithm for automatic WHS of CT data. Research on different MAS strategies and their influence
on WHS performance are limited. This work provides a detailed comparison study evaluating the
impacts of label fusion, atlas ranking, and sizes of the atlas database on the segmentation performance.
Methods: Atlases in a database were registered to the target image using a hierarchical registration
scheme specifically designed for cardiac images. A subset of the atlases were selected for label fusion,
according to the authors’ proposed atlas ranking criterion which evaluated the performance of each
atlas by computing the conditional entropy of the target image given the propagated atlas labeling.
Joint label fusion was used to combine multiple label estimates to obtain the final segmentation. The
authors used 30 clinical cardiac CT angiography (CTA) images to evaluate the proposed MAS scheme
and to investigate different segmentation strategies.

Results: The mean WHS Dice score of the proposed MAS method was 0.918 +0.021, and the mean
runtime for one case was 13.2 min on a workstation. This MAS scheme using joint label fusion
generated significantly better Dice scores than the other label fusion strategies, including majority
voting (0.901+£0.276, p < 0.01), locally weighted voting (0.905+0.0247, p < 0.01), and probabilistic
patch-based fusion (0.909 +0.0249, p < 0.01). In the atlas ranking study, the proposed criterion based
on conditional entropy yielded a performance curve with higher WHS Dice scores compared to
the conventional schemes (p < 0.03). In the atlas database study, the authors showed that the MAS
using larger atlas databases generated better performance curves than the MAS using smaller ones,
indicating larger atlas databases could produce more accurate segmentation.

Conclusions: The authors have developed a new MAS framework for automatic WHS of CTA
and investigated alternative implementations of MAS. With the proposed atlas ranking algorithm
and joint label fusion, the MAS scheme is able to generate accurate segmentation within prac-
tically acceptable computation time. This method can be useful for the development of new
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1. INTRODUCTION

According to the World Health Organization, cardiovascular
diseases are the number one cause of deaths globally. In 2008,
17.3% 10° people died from cardiovascular diseases, account-
ing for 30% of deaths around the world.! Medical imaging
and image analysis have had significant impacts on healthcare.
Cardiac computed tomography (CT), in particular, the contrast
enhanced CT and CT angiography (CTA), can capture the
anatomy of the heart and it has been widely used in the clinic.?
The morphological and pathological information from three-
dimensional (3D) medical images is useful in diagnosis and
treatment of patients. To enable the development of novel
clinical applications and thus improve cardiology, accurate
extraction and precise interpretation of the anatomical infor-
mation become particularly important.

The goal of whole heart segmentation (WHS) is to extract
the substructures of the heart, including the four chamber
blood cavities and the left ventricular (LV) myocardium. In
some cases, the great vessels are also of interest.’ Figure 1
shows an example of a cardiac CT image and its corresponding
WHS result. Notice that WHS is different from other appli-
cations of cardiac segmentation which focuses solely on the
ventricles and/or myocardium,* or the isolation of the whole
heart volume.’

WHS is useful for a number of clinical applications. For
example, it can be directly used to extract functional indices
such as the ejection fraction and myocardial mass. It is also
expected that the functional analysis of the whole heart has
the potential of detecting subtle functional abnormalities or
changes of the heart.% This is important for the diagnosis of
patients who otherwise have normal systolic function of the
ventricles but are suspected to have abnormal function in other
regions. Furthermore, the 3D surface rendering, as shown in
Fig. 1(c), has a wide range of applications. For example, it can
be used to investigate congenital malformations of the heart,
or to guide interventional procedures by fusing the 3D surface
with a real-time fluoroscopy ultrasound scan.

(a) (b)

1.A. Challenges and related works

Although extracting the whole heart structure is essential,
manual delineation of all the substructures is labor-intensive
and tedious, and the results can be subject to intra- and
interobserver errors. Therefore, automating the segmentation
becomes increasingly important. However, achieving fully
automatic WHS from cardiac CT is arduous. The challenge
mainly comes from (1) the large shape variations of the cardiac
anatomy, (2) the inconsistent and variable texture patterns of
contrast enhanced CT images, and (3) the indistinct bound-
aries of substructures in the images.’

To achieve automatic WHS, a priori models are commonly
used to guide the segmentation.’ Lotjonen et al.” and Koik-
kalainen et al.® employed statistical shape models to estimate
the shape of the heart in cardiac magnetic resonance (MR)
images. Zheng et al.” hierarchically detected boundary land-
marks based on steerable features and marginal space learning.
The shape was regularized by projecting the deformed model
onto a subspace of a learned statistical shape model. Peters
et al.'® developed a deformable model-based method for the
WHS of both cardiac CT and MR images. The same paper
proposed a piecewise affine parametric adaptation method to
extend the shape variability of the model and employed the
simulated search for detecting the optimal response of edges.
Kirisli et al.'' used eight atlases to perform a multicenter,
multivendor evaluation study on the WHS of CT data. Their
study adopted a conventional scheme, based on a global affine
registration and a free-form deformation (FFD) registration,
for atlas-to-target image registration and the majority voting
method was used for label fusion. Zhuang et al.'> employed a
mean atlas and a comprehensive registration algorithm for the
atlas-based WHS of MR images. More specifically, the locally
affine registration method (LARM) was proposed to tackle the
large shape variability of the cardiac anatomy. By adopting
LARM, the atlas-based segmentation method yielded a mean
WHS Dice score of 0.84+0.05 in a challenging test data set
involving nine different pathologies.
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Fic. 1. Demonstration of an atlas: (a) CT data as atlas intensity image; (b) manual segmentation as atlas label image; (c) volume rendering of whole heart

substructures.
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Atlas-based segmentation has gained great popularity in
tackling challenging segmentation tasks. An atlas is defined as
a pair of intensity and label images, and a segmentation is ob-
tained via atlas-to-target registration and subsequent segmen-
tation propagation. Multiatlas segmentation (MAS) involves
fusing multiple classifiers to derive a single segmentation. This
is a useful strategy to improve the robustness and accuracy of
atlas-based segmentation.''"!3-2? It is particularly effective and
efficient when there are multiple images with manual labeling
available as atlases such as in brain MR segmentation'>-2" and
cardiac image segmentation.'!:17:2!

Rohlfing et al.'* and Rohlfing and Maurer'* studied dif-
ferent atlas ranking and selection methods for MAS and
showed that the intensity-based similarity metrics between the
warped atlas image and the target image were good criteria for
atlas selection. Heckemann et al.'® proposed a mathematical
model for predicting the convergence of segmentation accu-
racy with respect to the increased number of atlases selected
for label fusion. Aljabar ef al.'> and van Rikxoort et al.'’
showed that with a good ranking criterion, the accuracy of
MAS could reach a global optimum after fusing a certain num-
ber of selected atlases. Intensity-based similarity measures,
such as the mutual information (MI) or normalized mutual
information (NMI),2>2 are often used for atlas ranking and
selection.

However, the intensity-based similarity measures do not
necessarily represent the segmentation quality of each atlas.
This is particularly evident in cardiac CTA where the texture
patterns can vary greatly. Figure 2 provides an example for
illustration:

— (a) and (b) are the intensity images of two atlases,
respectively, referred to as atlas-A and atlas-B;

— (c)and (d) are, respectively, the target image and the im-
age superimposed with manually delineated contours;

— (e) and (f) show the target image superimposed with the
contours of two segmentation results propagated from
atlas-A and atlas-B, respectively;

— (g) and (h) are, respectively, the deformed intensity
images of atlas-A and atlas-B after atlas-to-target regis-
tration.

For atlas-A, the segmentation accuracy is 0.831 (Dice score),
and the NMI between the deformed atlas image and the
target image is 1.113; for atlas-B, the segmentation accuracy
is 0.802, and the NMI is 1.132. In terms of segmentation
accuracy, atlas-A performs better than atlas-B. However, atlas-
B has a higher similarity value (NMI), thus can be erroneously
selected as a better choice over atlas-A if the NMI-based
similarity measure is used as the criterion for atlas ranking
and selection.

In this work, we propose a new atlas ranking method based
on conditional entropy. This method computes the negative
conditional entropy of the target image given the propagated
atlas labeling, which incorporates the segmentation perfor-
mance of each atlas and is expected to perform better than the
conventional intensity-based approaches.

In MAS, the majority voting algorithm has been widely
used to fuse multiple classifiers.?® Recently, a number of ap-
proaches have been proposed to improve the performance
of label fusion by using locally weighted voting and patch-
search strategies. In these approaches, the vote is spatially
weighted according to the intensity similarity between the
atlas and the target image and a patch search is employed to
recover local misalignments.'®!8:21:27-36 Baj et al.?! proposed a
probabilistic patch-based fusion (PPF) method and formulated
the label fusion problem in a Bayesian framework. This model
considers not only the similarity between local patches but
also it accounts for the registration uncertainty between the
target image and the atlas. A common limitation of label fusion

FiG. 2. Illustration of the atlas ranking problem using the intensity-based similarity measures. Please refer to the text for detail.
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methods is that the weights are computed independently for
each atlas, without taking into account the fact that different
atlases may produce similar labeling errors. Wang et al.?®
proposed a joint label fusion (JLF) algorithm to estimate local
weights by minimizing the expectation of labeling errors. This
algorithm explicitly models the pairwise correlation between
atlases. The joint probability is estimated using patch-based
intensity correlation. Patch-based strategies have been shown
to be effective in improving performance of label fusion, but
the impacts of patch size and search range have not been fully
investigated.

1.B. Contributions of this work

The main contributions of this work are as follows:

First, we propose a novel atlas ranking metric, which incor-
porates the propagated atlas labeling, to improve the MAS
scheme.

Second, we demonstrate a clinically applicable MAS
scheme which can generate robust and accurate WHS of CT
data. This MAS scheme adopts the proposed atlas ranking
algorithm and a hierarchical image registration method specif-
ically designed for WHS of cardiac images. In our previous
work, we have demonstrated that the three-level LARM can
improve the atlas-to-target registration of cardiac images and
consequently improve the segmentation accuracy of the single
atlas-based approach.'? In this work, we further investigate the
performance of this registration technique for MAS. Details
of the WHS results are reported to provide a benchmark for
future research.

Finally, we provide detailed studies investigating different
MAS strategies in order to understand the impacts of different
label fusion algorithms, atlas ranking methods, and atlas data-
bases. While it has been widely recognized that the MAS
should outperform the single atlas-based segmentation (SAS),
the influence of the sizes of atlas databases on the MAS perfor-
mance has not be well understood. In this work, we employed a
large number of cardiac CTA images and performed a number
of experiments to study this aspect.

The remainder of the paper is organized as follows: Sec. 2
introduces the data and atlases used in this work and Sec. 3 de-
scribes the methods. The results are presented in Secs. 4 and 5
provides a discussion of these results. Finally, we conclude the
work in Sec. 6.

TasLe I. Summary of the subjects and CTA data used.

2. MATERIALS
2.A. Data

Thirty cardiac CTA images from 30 patients at the end-
diastolic phase were used. All patients were Chinese, aged
from 43 to 86 (64.8 £11.6) yr old, with body weight between
51 and 93 (69.0+9.37) kg and height between 153 and 178
(164.4 +7.8) cm. Among them, 13 were male and 17 were
female. All subjects had cardiovascular diseases, involving a
wide variety of pathologies. Some patients had a combination
of several different types of pathologies. For details of the
demographics and the pathologies, please refer to Table I.

The CTA data were acquired from state-of-the-art 64-slice
CT scanners (Philips Medical Systems, the Netherlands) using
a standard coronary CTA protocol at two sites. All the data
cover the whole heart from the upper abdominal to the aortic
arch. Each slice, acquired in the axial view, has a wide field-
of-view (FOV) as the example shown in Fig. 1(a). The in-
plane resolution is about 0.44 X 0.44 mm and the average
slice thickness is 0.60 mm. The orientation information was
recorded in the header of the original files, which were ac-
quired and stored in the Digital Imaging and Communications
in Medicine (DICOM) format. This information was utilized
in the atlas-to-target registration.

2.B. Substructures of interest and manual
segmentation

Seven substructures were of interest in the WHS study,
including

(1) the LV cavity;

(2) the right ventricular (RV) cavity;

(3) the left atrial (LA) cavity;

(4) the right atrial (RA) cavity;

(5) the myocardium of the left ventricle (Myo) where the
epicardium (Epi) is assessed in the evaluation of sur-
face delineation;

(6) the ascending aorta trunk from the aortic valve to the
superior level of the atria;

(7) the pulmonary artery (PA) trunk from the pulmonary
valve to the bifurcation point.

The substructures in each image were manually labeled
to generate the atlas label map and to provide a gold stan-

Resolution ~0.44x0.44 mm in-plane and ~0.60 mm slice thickness

Subjects Number: 30 Ethnicity: Chinese

Gender All (30 subjects) Male (13 subjects) Female (17 subjects)
Age (yr) 43-87 (64.8+11.6) 43-84 (59.9+11.4) 54-87 (68.5+10.7)
Weight (kg) 51-93(69.0+£9.37) 58-91 (73.8+13.6) 51-93 (65.5+£10.8)

Height (cm) 153-178 (164.4+7.8)

170-178 (173.0+3.9)

153 -165 (158.4+3.8)

Pathologies

(1) Cardiac function insufficiency (NYHA II), (2) cardiac edema, (3) hypertension

(II), (4) sick sinus syndrome, (5) arrhythmia, (6) atrial flutter, (7) atrial
fibrillation, (8) artery plaque, (9) coronary atherosclerosis

Medical Physics, Vol. 42, No. 7, July 2015
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dard for validation as well. Figures 1(a) and 1(b) show an
example of a cardiac CT image and its corresponding manual
segmentation. The manual segmentation was performed by
two well-trained master students majoring in biomedical engi-
neering, and neither of them was aware of the methodologies
of automatic segmentation. The two observers employed a
brush tool in the software ITK-SNAP (Ref. 37) in order to
manually label each substructure slice-by-slice. The labeling
results were double checked by an expert in cardiac anatomy.
The manual segmentation took 6—10 h/case.

2.C. Atlas

The cardiac CT images were used as intensity images for
the atlas. Figure 1(a) shows an example of the intensity image
of a cardiac CT atlas. The atlas label image indicates the
segmentation of all substructures of interest using a set of
discrete labels. Figure 1(b) shows an example of the label
image of a cardiac CT atlas.

3. METHODS

This section explains the different methodologies used,
including the SAS and the MAS (Sec. 3.A), the atlas-to-
target image registration (Sec. 3.A.1), the atlas ranking and
selection techniques (Sec. 3.A.2), the label fusion strategies
(Sec. 3.A.3), the evaluation measures (Sec. 3.B), and the
experiments designed for the proposed studies (Sec. 3.C).

3.A. Single atlas-based segmentation and multiatlas
segmentation strategy

Figure 3(a) shows the conventional atlas-based segmenta-
tion, i.e., the SAS scheme, where an atlas is registered to the
target image and the labeling of the atlas is then propagated
to the target image by applying the resulting transformation
to the atlas label image. SAS may generate a poor result if the
registration algorithm does not perform well. In contrast, MAS
accounts for intersubject variation of the anatomy and texture
patterns by using a set of atlases. It reduces the risk of poor
segmentation from a single registration by combining multiple
results from the set of atlases and has shown great potentials
in segmenting complex organs.'31¢

Let I be the target image; given a set of N atlases {(A,,L,)},
n=1,...,N, where A, and L, are a pair of atlas intensity
image and atlas label image. MAS performs an atlas-to-target
registration for each atlas,

T, = argopt Registration(/,A,,),
Th

n

where T, is the resulting transformation. The segmentation of
I by atlas A, denoted as S,,, is then derived by S, =T,(L,),
which is the warped atlas label image by 7,,. The MAS scheme,
as illustrated in Fig. 3(b), selects a subset of M atlases based
on an atlas ranking criterion (Sec. 3.A.2), and the final result
is derived by a label fusion step,

S = Label Fusion({S},5,, ..., Sam }),
where {S;} are the deformed atlas label images from the
selected M atlases.

3.A.1. Atlas-to-target registration

Since the atlas and target images generally come from
different subjects, deformable registration is often adopted
to accurately align them. The conventional strategy employs
a global affine registration, followed by a fully nonrigid
algorithm.''*® However, due to the complex shape and
large shape variability of the heart, nonrigid registration
may generate unrealistic deformation fields due to the poor
initial alignment of substructures by a global affine registra-
tion.!?

We adopted a hierarchical registration framework, includ-
ing a global affine registration for heart localization, a LARM
for substructure initialization, and a FFD registration for local
refinement. Note that in the heart localization, we used the
orientation information contained in the original DICOM files
of the atlas and the target image for orientation correction
before performing intensity-based registration.”> This hierar-
chical framework was specifically designed for the registration
of cardiac images.'?

3.A.1.a. Substructure initialization. LARM has been pro-
posed in order to tackle the variation coming from the substruc-
tures of the heart, by modeling each of them using a locally
affine transformation.'>* The global deformation field of

& Registration

deformation field

atlas intensity
image

Atlas
. Generatc?
Segmentation

atlas label image

Atlas 1
2
\ Registration ‘
Atlas 2 /
\ 2 - Lal?el
/ Atlas R.anking\ ‘ ‘

and Selection .
Atlas N' / \ .

(a)

(b)

Fic. 3. Segmentation frameworks: (a) SAS and (b) MAS.
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LARM is computed as follows:
G,’(.X),

T2 SN, xe o
i=1 i=1

xeV,i=1,...,n

where {V;} is the set of predefined substructures, {G;} is the
set of assigned locally affine transformations, and w;(x) is a
normalized weighting factor related to the inverse distance
between a point x and the region V;. To obtain a folding-free
deformation field, a regularization step is applied by moni-
toring the Jacobian matrix Jr, such that when the determi-
nant of the matrix at any point drops below a threshold (0.5
as recommended in Ref. 12), then (1) a new image pair is
generated by applying current deformation field to the original
images; (2) the locally affine transformations are all reset to
identity; and (3) a new optimization process is started. The
final transformation of the registration is a concatenation of
the series of transformations,

T=TynoTy-1o-oT. 2

The composed T is a nonfolding deformation field, since all
the {T;} are folding free.

We adopted a three-level LARM procedure which could
improve the robustness of the atlas-to-target registration:'?

e First, we used LARM with two locally affine transfor-
mations. The corresponding local regions were the de-
scending aorta and the rest of the whole heart structure.
We chose this setting because some of the CT images did
not fully cover the aortic arch, and the descending aorta
was separated from the rest of the whole heart.

e Then, we used LARM with three locally affine trans-
formations by dividing the whole heart into three local
regions: the descending aorta, the ventricular region, and
the combination of atria and great vessels.

o Finally, we used LARM with seven locally affine trans-
formations. The seven local regions were the two ventri-
cles, the two atria, the pulmonary artery, the ascending
aorta, and the descending aorta.

3.A.2. Atlas ranking and selection

A number of works have demonstrated the importance of
ranking and selecting a subset of atlases, instead of using all
for label fusion in MAS.!3:15:16.21.2840 Thjg i5 because some
atlases can generate poor segmentation results which affect
the consensus in fusing the multiple classifiers. Therefore, it
is common to rank the atlases with respect to the expected
performance and then select a subset of atlases with better
performance. Since the heart shape is less determined by
metainformation such as age or demographics and the path-
ological information is usually unknown before diagnosis,
ranking atlases using image information is often adopted. The
commonly used strategies compute a voxelwise and intensity-
based similarity measure such as MI or NMI (Refs. 13 and
15) to assess the expected segmentation quality of an atlas.
These ranking criteria assume that the similarity measure can

Medical Physics, Vol. 42, No. 7, July 2015

indicate the expected segmentation quality, which may not
always hold as Fig. 2 illustrates.

We propose a new metric, the negative conditional entropy
of the target image given the propagated labeling (the warped
label image S,,), as the atlas ranking criterion,

pG.D)

R(A,) = —(H(I|S,)) = m;snpa,mogm : 3)

where H denotes entropy, p(i,l) is the joint probability of the
intensity value i and label /, and p(/) is the marginal probability
of label /.

Conditional entropy measures the uncertainty inherent in
the intensity distributions of the target image, conditioned on
the propagated atlas label image. Compared with the intensity-
based similarity measures, conditional entropy provides a
mechanism to compute the relationship between the target
image and the atlas segmentation. Hence, it has the potential
of providing less biased atlas ranking.

To study the influence of different atlas selection strategies
on performance of MAS, we compared the proposed method,
referred to as Conditional entropy (nonrigid REG), with four
other ranking methods:

(1) Manual ranking (ground truth): This method com-
putes the generalized Dice score®>*! between the atlas
segmentation and gold standard segmentation to rank
the atlas. The computation is described in Eq. (5)
(Sec. 3.B). Note that this method provides the best
ranking result but is unavailable in practice, since the
gold standard segmentation is unknown.

(2) NMI (nonrigid REG): This method computes the NMI
(Ref. 25) between the target image and the warped atlas
intensity image after nonrigid registration.'? Similar
to the work for brain MR segmentation,15 the NMI
is computed within a ROI, defined by a mask image
computed from the endo- and epicardial surfaces of the
segmentation result, after a morphological dilation of
5 mm.

(3) NMI (affine REG): This method computes the NMI be-
tween the target and warped atlas images after a global
affine registration.?> This method does not require the
computation-intensive nonrigid registration,'® but the
surfaces of the atlases are generally more misaligned
with the ground truth surfaces. Therefore, the ROI
mask is computed using a morphological dilation oper-
ation of 10 mm, to cover the ground truth surfaces of
the target image.

(4) Random (no ranking): This method does not rank the
atlases and only randomly selects a subset of atlases
from the database for registration and label fusion.

3.A.3. Label fusion

Majority voting fusion (MVF) is a straightforward and
widely used algorithm to fuse multiple classifiers.?® This
method is computationally the most efficient, but it does
not account for the different performance of each atlas
and the misalignment in atlas-to-target registration. Hence,
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the performance of MAS using MVF can be limited.
In this work, we employed JLF, which estimated local
weights by minimizing the expectation of labeling errors
and adopted a patch-based strategy to correct the local
misalignment.*> The patch size and search range are the
important parameters in determining the performance of label
fusion. We employed three patch sizes and four patch search
ranges for comparisons in the experiment, including 3x3
X3, 5x5x5, and 7x7x7 mm for the patch size, and
I1x1x1,3%x3%x3, 5%x5x%x5, and 7x7x7 mm for the search
range.

To study the performance of MAS using different label
fusion algorithms, we compared the segmentation accuracy of
JLF with three label fusion methods, including (1) MVF, (2)
locally weighted voting fusion (LWF), and (3) PPE>! LWF
is a special case of PPF where the patch size is the size of
a pixel and the search range is limited to the target pixel.”!
In our experiments, the patch size and search range for JLF
were, respectively, set to 7X7X7 and 5x5 X5 mm, and the
parameters for PPF were both set to 3x3x 3 mm. These were
the optimal parameters for WHS of CTA data based on our
previous experience.

3.B. Segmentation evaluation

Dice score (DS =2|V N U|/(|V|+|U|)),*® Jaccard index
(I=|VnU|/(JVUU|)),** and surface-to-surface distance were
used to assess the segmentation accuracy of a substructure. In
this formulation, V and U indicate two segmentation results.
Surface distance (SD) is computed from average distance be-
tween the automatically segmented surface and the manually
delineated surface,

_ ZXIEQID(XI’C2)+ szeQzD('xz’Cl)

SD ,
|Q4]+ Q|

“

where C; and C, denote the surfaces of two segmentation
results, Q; and Q, are the sets of sample points from C; and
C,, respectively; D(x,C,) is the Euclidean distance of x; to a
triangle formed by three points in C, which are the closest to
x1, and D(x,,Cy) is computed in a similar manner.

To assess the volume accuracy of the WHS, the generalized
overlap measures were employed,**!

237 IVinUy|
=,
g1 (Vs +1Us)
where Vi and U denote the two segmentation results of a
substructure. Similarly, we computed a generalized distance

metric of the seven evaluated surfaces to indicate a WHS SD,
as follows:

Y1 (Zaea, DO1Co) + Tea,, D(2.C)
119241 +1Q4,)) ‘

Here, the distance, D(x1,Cs,) and D(x,Cs,), is computed be-

tween the surfaces of corresponding substructures of the two

WHS results. Instead of computing SD directly from the two
whole heart surfaces using Eq. (4), the metric using Eq. (6)

¥ IVnUyl

Se=t 70 5
S VUl ©)

SD =

(6)

Medical Physics, Vol. 42, No. 7, July 2015

provides a more objective measurement for the evaluation of
WHS.

3.C. Experiment design

Thirty clinical cardiac CTA images, described in Sec. 2,
were used. The proposed MAS adopted the hierarchical
scheme for the target-to-image registration, the proposed
conditional entropy for atlas ranking, and the JLF for label
fusion. A leave-one-out cross validation strategy was adopted,
where each subject was considered as a test case and the
remaining 29 were used to form an atlas database. The 11 best
ranked atlases were selected for label fusion.

For comparisons, results of the SAS were reported. For
SAS, each of the 30 subjects was treated as an atlas to segment
the other 29 images, resulting in 3029 =870 SAS cases.

Three comparison studies were performed:

(1) MAS using different label fusion strategies, including
different label fusion methods and different parameter-
izations of the patch-based strategy for JLF;

(2) MAS using different atlas ranking methods;

(3) MAS using different sizes of atlas databases.

The algorithms used in this work were implemented on a
Lenovo ThinkStation D30 workstation. The implementations
were based on single thread for the atlas-to-target registration
in a SAS. In MAS experiments, the atlas-to-target registra-
tion tasks were run simultaneously using four Intel Xeon ES5-
2667V2 CPUs, which had 32 cores in total.

3.C.1. Study of atlas ranking and selection

In this study, MAS using the proposed conditional entropy
and nonrigid registration was compared with the four schemes
described in Sec. 3.A.2. All the five MAS schemes adopted
MVF for label fusion. A leave-one-out cross validation strat-
egy was used. For each MAS scheme, we analyzed the perfor-
mance curves of the mean generalized Dice scores of WHS
with respect to the number of atlases selected for segmentation
and label fusion. To objectively assess the effectiveness of an
atlas ranking method, we investigated the performance curves
according to three criteria:

(1) the Dice score of the MAS scheme using the one best
ranked atlas;

(2) the number of atlases needed to reach the optimal
performance;

(3) the Dice score of the optimal MAS performance.

3.C.2. Study of influence of atlas database

We investigated the performance of a MAS scheme with
respect to the size of atlas databases in two aspects: First,
we analyzed the influence of the size of an atlas database on
the performance of a MAS scheme; second, we identified the
number of atlases required for a MAS scheme to reach the
optimal performance.
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FiG. 4. Three orthogonal views of four segmentation cases with the WHS Dice scores in brackets, illustrating performance of the proposed MAS scheme: case
1 and case 2 are the two worst cases among all the test subjects in terms of WHS Dice scores, and case 3 and case 4 are the two median cases.

We randomly selected a certain number of atlases from the
available 30 subjects to form an atlas database. The remaining
subject(s) were then used to form a test data set. In our study,
we chose one third (referred to as Size 11), half (referred to
as Size 15), two thirds (referred to as Size 20), three quarters
(referred to as Size 25), and all but one (referred to as Size 29)
from the 30 subjects, resulting in five different sizes. For Size
11, we employed 114 cases for the experiments; for Size 15, we
used 90 cases; for both Size 20 and Size 25, we selected 60 MAS
cases; and for Size 29, we employed the leave-one-out strategy.

The MAS scheme adopted the proposed atlas ranking algo-
rithm and the MVF method for label fusion.

4. RESULTS

4.A. Performance of the proposed MAS scheme

Figure 4 provides visual results of four cases: the three
orthogonal views (axial, coronary, and sagittal views) of the
CT images superimposed with the contours of automatic
segmentation using the proposed WHS scheme. Case-1 and
case-2 are the two worst segmentation results among the 30
test subjects in terms of WHS Dice score, and case-3 and case-
4 are the two median cases.

Table II provides the segmentation accuracies of the SAS
and the proposed MAS scheme, including the Dice scores,

TasLe II. Performance of the SAS and the proposed MAS scheme; SD: surface distance; Myo: myocardium; Epi: epicardium.

Dice LV Myo RV LA RA Aorta PA WHS
SAS 0.910+£0.0546  0.760 + 0.0955 0.829 +0.0879  0.842 +0.0817 0.761 £ 0.121 0.867 +£0.0989  0.699 £ 0.165  0.825 + 0.0670
MAS 0.967 +£0.0125 0.901 £0.0242 0918 £0.0308 0.920 £ 0.0413 0.872+£0.0481 0.955+0.0153 0.789 +£0.1294 0.918 +0.0212
Jaccard LV Myo RV LA RA Aorta PA WHS
SAS 0.838 £0.0830 0.621+0.113 0716 £0.113  0.735+0.113  0.627 £0.135  0.776 £ 0.129  0.559 £ 0.180  0.708 + 0.0880
MAS 0.936 £0.0227 0.821 +£0.0391  0.849 +0.0511  0.855 +0.0685 0.775+0.0739  0.915 + 0.0278  0.669 + 0.1685  0.849 + 0.0357
SD (mm) LV Epi RV LA RA Aorta PA WHS
SAS 1.35+1.20 1.90 + 1.85 220 +2.20 2.02 +2.08 2.98 +2.87 1.19 + 1.29 1.68 + 1.58 1.97 +2.27
MAS 0.82 +0.55 1.10 £ 0.76 1.56 + 1.03 1.79 £ 1.08 246 + 1.64 0.84 +0.47 1.35+0.79 1.58 £0.92

Medical Physics, Vol. 42, No. 7, July 2015
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Tasie III. The WHS Dice scores and runtime (minute) of the MAS schemes using different label fusion

algorithms.

MAS-MVF MAS-LWF MAS-PPF MAS-JLF
Dice 0.901+0.0276 0.905+0.0247 0.909+0.0249 0.918+0.0212
Time 2.82 2.89 3.62 13.15

Jaccard indices, and SD of each substructure as well as the
whole heart. The accuracies of the proposed MAS were better
than those of the SAS for all categories with statistical signif-
icance using the paired, two-tailed #-test (p < 0.001). Note
that in the MAS, the computation of the conditional entropy
ranking criterion was based on the whole heart. Hence, the
segmentation accuracy for a specific substructure could be
further improved, if the conditional entropy was computed
solely based on the substructure(s) of interest. For the runtime,
the SAS took 2.82 min on average for a case and the MAS took
13.15 min.

4.B. Study of label fusion strategies

Table IIT provides the WHS Dice scores and runtime of
the four MAS schemes described in Sec. 3.A.3, i.e., MAS-
MVE, MAS-LWE, MAS-PPF, and MAS-JLF. To assess the
significance of performance difference, we used the two-tail,
paired student #-test. MAS-JLF was statistically significantly
better than MAS-PPF (p < 0.0001), MAS-PPF was signifi-
cantly better than MAS-LWF (p < 0.0001), and MAS-LWF
was significantly better than MAS-MVF (p = 0.000 86). Us-
ing the Bonferroni correction, we obtained the performance
ranking of the four atlas ranking methods, from the worst to
the best as MVF, LWF, PPF, JLF, with statistical significance
(p<0.001).

Figure 5 plots the WHS Dice scores of the MAS-JLF using
different patch-based strategies, as described in Sec. 3.A.3.
For the patch search range, JLF did not demonstrate evident
difference by increasing the search range after 3 X3 x3 mm.
Also, when the patch size was small (3 X3 %3 mm), the fusion
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results could be indeed poor, compared to the results using
patch size 5x5x5 or 7x7x7 mm. The optimal parameters
were 7 X7 x7 mm for the patch size and 5x5x5 mm for the
search range.

4.C. Study of atlas ranking and selection

Figure 6(a) plots the Dice score curves of the five MAS
schemes described in Sec. 3.A.2. The mean WHS Dice score
of SAS, 0.825+0.0670, is also presented. The curve of MAS
Conditional entropy (nonrigid REG) was the closest to that
of MAS Manual ranking (ground truth), indicating that the
proposed atlas ranking scheme produced the best performance
compared to the other four methods.

In addition, we assessed the effectiveness of the atlas rank-
ing using the three criteria described in Sec. 3.C. First, when
selecting one atlas, four of the five MAS schemes, except for
MAS Random (no ranking ), produced better Dice scores than
the SAS, indicating that these four atlas ranking methods were
effective and improved the MAS segmentation. The perfor-
mance rankings of them were as follows: MAS Manual rank-
ing (ground truth), MAS Conditional entropy (nonrigid REG),
MAS NMI (nonrigid REG), and MAS NMI (affine REG).

Second, all the five curves demonstrated a global optimum.
In general, the performance curve of a MAS scheme using
an effective atlas ranking approach should improve rapidly.
The fewer the number of atlases for the curve to reach the
optimum, the better the atlas ranking method is considered.
As Fig. 6(a) shows, the performance rankings were as follows:
MAS Manual ranking (ground truth), MAS Conditional en-
tropy (nonrigid REG), MAS NMI (nonrigid REG), MAS NMI
(affine REG), and MAS Random (no ranking).

Finally, the performance rankings according to the optimal
Dice scores of the five schemes were as follows: MAS Manual
ranking (ground truth), MAS Conditional entropy (nonrigid
REG), MAS NMI (nonrigid REG), MAS NMI (affine REG),
and MAS Random (no ranking). The WHS Dice scores of
the five MAS schemes using 11 atlases, where all the perfor-
mance curves had started converging, were, respectively, 0.905
+0.025,0.901+0.028,0.898 +£0.030,0.896+0.030, and 0.890
+0.034. MAS Conditional entropy (nonrigid REG) was signif-
icantly better than MAS NMI (nonrigid REG) (p = 0.028), NMI
(affine REG) (p <0.001), and MAS Random (no ranking) (p <
0.001). This resultagrees with the two conclusions drawn above
and confirms the effectiveness of the atlas ranking methods.

4.D. Study of influence of atlas database

Figure 6(b) shows the performance of MAS using different
sizes of atlas databases. Each curve shows a global optimum
with respect to the number of atlases selected for label fusion.



3831

Different atlas ranking methods

0.91
S o9t
8
& 0.89F
€
o
8 0.88r
b=
3 0.87f
~
K]
2 0.86r
=
S 0.85f * SAS i
< —6— MAS Manual ranking (ground truth)
§ 0.841 —»— MAS NMI (nonrigid REG) H
o —b>— MAS NMI (affine REG)
E 0.831 —+— MAS Random (no ranking) H
* —a— MAS Conditional entropy(nonrigid REG)
0.82 i i n T T ;
0 5 10 15 20 25 30
Number of atlases selected for segmentation
(a)

Zhuang et al.: Multiatlas whole heart segmentation of CT data

3831

Different atlas database sizes

0.861 * SAS -

—e— MAS Size 11
—=—MAS Size 15
—b—MAS Size 20
—+— MAS Size 25
—<—MAS Size 29

Dice score of whole heart segmentation

0 5 10 15 20 25 30
Number of atlas propagation and segmentation

(b)

Fig. 6. Performance of the MAS schemes using different atlas ranking methods (a) and different atlas databases (b); the result of SAS is provided for

comparisons.

In addition, the numbers of atlases for the curves to reach their
optima are different. In general, the smaller the atlas database
is, the fewer number of atlases is needed to reach the optimum
performance. For example, the numbers for the MAS to reach
the global optimal performance were, respectively, 7, 9, 13
for atlas databases of size 11, 20, 29. Finally, MAS using a
larger atlas database generated more accurate WHS results
than the MAS using a smaller database when the same number
of atlases was used for label fusion.

5. DISCUSSION

In the label fusion study, LWF improved the WHS Dice
score to 0.905 +£0.025, compared to 0.901 +0.028 in the case
of using traditional MVF, and the result was comparable to
the accuracy of MAS-MVF using Manual ranking (ground
truth) in Fig. 6(a). PPF further improved the segmentation
accuracy to 0.909 +0.025 by using the patch-based strategy,
and JLF achieved the best result, 0.918 £0.021, by tackling
correlated labeling errors in different atlases. The improve-
ments were statistically significant (p < 0.001) using the Bon-
ferroni correction. In the patch search strategy, the label fusion
performance was not necessarily improved by increasing the
patch size and search range. This is probably due to the fact
that the intensities between different substructures, such as LV

and LA, can be similar and thus cause labeling errors in patch-
based decision making.

In the atlas ranking experiment, the proposed conditional
entropy method yielded the highest Dice score compared to
the conventional intensity-based method. This is because our
method provides a mechanism to incorporate atlas segmenta-
tion into the evaluation of atlas ranking and thus avoids biased
rankings due to the inhomogeneous intensity patterns which
are commonly presented in cardiac CTA images.

Section 4.D shows that MAS benefits more from a larger
atlas database. However, when the number of atlases is signif-
icantly greater than the number of cores of the workstation, it
is recommended to adopt a multilevel atlas ranking scheme, by
first using a fast atlas ranking method to select a subset of good
atlases in order to build a subject-specific atlas database. Then,
a MAS scheme with a more effective atlas ranking algorithm
can be applied using the smaller but more subject-specific
atlas database. For example, the NMI (affine REG) method
only takes 4 s for a single thread process to rank an atlas,
3% runtime compared to that of Conditional entropy (nonrigid
REG). Therefore, one can select 30 subject-specific atlases
from a much larger atlas pool using NMI (affine REG) ranking
method, and then applies Conditional entropy (nonrigid REG)
to achieve the optimal MAS performance without sacrificing
computational efficiency. In future work, we will investigate

TasLe IV. The segmentation results reported in the literature. N/A indicates the segmentation error was not
provided; Myo/Epi: myocardium for Dice or epicardium for SD.

Zheng et al. (Ref. 9)

Ecabert et al. (Ref. 43)

Kirisli et al. (Ref. 11)

Error SD (mm) SD (mm) SD (mm) Dice
LV 1.13 £ 0.55 0.77 £ 1.14 0.62 +0.63 0.95
Myo/Epi 1.21 £ 0.42 0.68 + 0.96 1.04 £ 1.15 N/A
RV 1.55 £0.38 0.63 + 0.66 1.40 = 1.47 0.90
LA 1.32 £0.42 0.70 + 0.87 0.66 + 0.84 0.94
RA 1.57 £ 0.48 0.82 + 1.00 1.44 + 1.88 0.89
Aorta N/A 0.60 + 1.14 0.44 + 0.60 0.94
PA N/A 0.50 + 0.49 N/A N/A
WHS N/A 0.82 + 1.00 0.99 + 1.25 N/A
Runtime 4s 10-30's 20 min

Medical Physics, Vol. 42, No. 7, July 2015
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this multilevel atlas ranking scheme using a large database
constructed from multiple centers.

Table IV presents the WHS results of cardiac CT in the
literature. Zheng et al.® validated their algorithm using more
than 500 CT images from 137 subjects, among which 242 were
used for training and 323 were used for testing. The training
data and test data could come from the same subjects. Ecabert
et al.¥ employed a leave-one-out cross validation strategy on a
cohort of 28 subjects. They reported the surface distance error
based on a triangulated surface mesh model, which was used
for the construction of both the gold standard segmentation
and the automatic segmentation. Kirisli et al.!! performed a
multicenter, multivendor evaluation of a conventional MAS
method. The whole heart validation measurements reported
were obtained from the leave-one-out cross validation of eight
subjects. From the reported results, Ecabert e al.** achieved
the best surface distance accuracy, while the method devel-
oped by Zheng et al.’ was the most efficient in terms of run-
time. However, note that due to the difference in the test data
sets, evaluation metrics and computer hardwares, an objective
comparison between these works can be difficult.

6. CONCLUSIONS

This work presents a new MAS method for the WHS of
CT data. The MAS adopts a hierarchical registration scheme
specifically designed for cardiac images, a new atlas ranking
method based on conditional entropy, and JLF for label fusion.
We evaluated this WHS method and investigated different
segmentation strategies using 30 clinical cardiac CTA images.
The proposed MAS method yielded a mean WHS Dice score
of 0.918+0.21, a Jaccard index of 0.849 +0.036, a surface
distance of 1.58 £0.92 mm, and the mean computation time
for one case was 13.2 min. The new atlas ranking criterion
was shown to outperform the conventional intensity-based
schemes, and the MAS using a larger atlas database achieved
better segmentation accuracy (WHS Dice scores) than using a
smaller one. Our WHS method is fully automatic and is robust
and accurate for geometrical modeling of the heart. It can be
useful in clinic care of cardiovascular diseases.
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