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Introduction

Multi-modality medical images

3
Zhuang, Xiahai. "Multivariate mixture model for myocardial segmentation combining multi-source images." IEEE transactions 

on pattern analysis and machine intelligence 41, no. 12 (2019): 2933-2946.



Motivation

Myocardial infarction identification from LGE CMR

Automatic myocardial segmentation from LGE CMR

Combined segmentation for multi-source images

Simultaneous registration and segmentation
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Multivariate mixture model

Notations:

Denote 𝑰 = 𝐼𝑖 𝑖 = 1,… ,𝑁𝐼 be a set of 𝑁𝐼 acquired from the 

same subject.

Denote Ω as the common space, which is defined by the 

combination of images.

For a location 𝑥 ∈ Ω, denote tissue types by labels, 𝑠 𝑥 = 𝑘, 

𝑘 ∈ 𝐾, and the subtypes of a tissue 𝑘 in image 𝐼𝑖 as 𝑧𝑖 𝑥 =

𝑐, 𝑐 ∈ 𝐶𝑖𝑘.
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Multivariate mixture model

Likelihood function: 𝐿 𝜃; 𝑰 = 𝑝 𝑰 𝜃

Assuming all images are located in the common space

Assuming independence of each location, one gets

𝑝 𝑰 𝜃 =ෑ

𝑥∈Ω

𝑝 𝑰 𝑥 𝜃

Assuming mixture model on label assignments,

𝑝 𝑰(𝑥) 𝜃 = ෍

𝑘∈𝐾

𝜋𝑘𝑥 ⋅ 𝑝 𝑰 𝑥 𝑠 𝑥 = 𝑘, 𝜃

where 𝜋𝑘𝑥 = 𝑝 𝑠 𝑥 = 𝑘 𝜃 is the label proportion.
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Multivariate mixture model

Likelihood function: 

𝐿 𝜃; 𝑰 =ෑ

𝑥∈Ω

෍

𝑘∈𝐾

𝜋𝑘𝑥 ⋅ 𝑝 𝑰 𝑥 𝑠 𝑥 = 𝑘, 𝜃

Assuming conditional independence of intensities between 

different images:

𝑝 𝑰 𝑥 𝑠 𝑥 = 𝑘, 𝜃 =ෑ

𝑖=1

𝑁𝐼

𝑝 𝐼𝑖 𝑥 𝑘𝑥 , 𝜃

Assuming Gaussian mixture model as the intensity 

distribution:

𝑝 𝐼𝑖 𝑥 𝑘𝑥 , 𝜃 = ෍

𝑐∈𝐶𝑖𝑘

𝜏𝑖𝑘𝑐 ⋅ Φ 𝐼𝑖 𝑥 ; 𝜇𝑖𝑘𝑐 , 𝜎𝑖𝑘𝑐
2

8



Multivariate mixture model

Likelihood function: 

𝐿 𝜃; 𝑰 =ෑ

𝑥∈Ω

෍

𝑘∈𝐾

𝜋𝑘𝑥ෑ

𝑖=1

𝑁𝐼

෍

𝑐∈𝐶𝑖𝑘

𝜏𝑖𝑘𝑐 ⋅ Φ 𝐼𝑖 𝑥 ; 𝜇𝑖𝑘𝑐 , 𝜎𝑖𝑘𝑐
2

where 𝜃 = 𝜋𝑘𝑥 , 𝜏𝑖𝑘𝑐 , 𝜇𝑖𝑘𝑐 , 𝜎𝑖𝑘𝑐
2 are model parameters.
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Multivariate mixture model

Graphical model:
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Expectation-maximization algorithm

Objective:

Learning parameters of the model from the observed data

• Data are considered as realizations of the generative model

• Registration 

Inference given the learned parameters

• Segmentation

11

Representation

Inference Learning

Segmentation Registration



Expectation-maximization algorithm

Maximum likelihood estimator (MLE)

Log-likelihood:

ℓ 𝜃; 𝑰 = ෍

𝑥∈Ω

ln ෍

𝑘∈𝐾

𝜋𝑘𝑥ෑ

𝑖=1

𝑁𝐼

෍

𝑐∈𝐶𝑖𝑘

𝜏𝑖𝑘𝑐 ⋅ Φ 𝐼𝑖 𝑥 ; 𝜇𝑖𝑘𝑐 , 𝜎𝑖𝑘𝑐
2

Problems related to MLE:

• Maximizing the log-likelihood is not a well posed problem because 

singularities will occur whenever one of the Gaussian components 

‘collapses’ onto a specific data points when we have at least two 

components in the mixture

• The presence of the summation over 𝑘 that appears inside the 

logarithm make maximization difficult

12Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006, Section 9.2.1



Expectation-maximization algorithm

E-step: compute posterior distribution of the latent variables 

𝑐𝑖𝑘 , 𝑘𝑥 given the current estimate of the model parameters 

𝜃 𝑚

Posterior of 𝑘𝑥:

𝑃𝑘𝑥
𝑚+1

≔ 𝑝 𝑠 𝑥 = 𝑘 𝑰; 𝜃 𝑚

=
𝑝 𝑰 𝑥 𝑘𝑥; 𝜃

𝑚 𝜋𝑘𝑥
𝑚

σ𝑙∈𝐾 𝑝 𝑰 𝑥 𝑙𝑥; 𝜃
𝑚 𝜋𝑙𝑥

𝑚

Posterior of 𝑐𝑖𝑘 , 𝑘𝑥 :

𝑃𝑖𝑘𝑐𝑥
𝑚+1

≔ 𝑝 𝑠 𝑥 = 𝑘, 𝑧𝑖 𝑥 = 𝑐𝑖𝑘 𝑰, 𝜃
𝑚

= 𝑝 𝑐𝑖𝑘𝑥 𝑘𝑥, 𝑰, 𝜃
𝑚 𝑃𝑘𝑥

𝑚+1

=
Φ 𝐼𝑖 𝑥 ; 𝜇𝑖𝑘𝑐

𝑚
, 𝜎𝑖𝑘𝑐

2 𝑚
𝜏𝑖𝑘𝑐
𝑚

𝑝 𝐼𝑖 𝑥 𝑘𝑥; 𝜃
𝑚

𝑃𝑘𝑥
𝑚+1

13



Expectation-maximization algorithm

M-step: Maximize the expected complete-log-likelihood 

under the updated posterior distribution with respect to the 

model parameters

Log-likelihood (marginal):

ln 𝑝 𝑰 𝜃 = ෍

𝑥∈Ω

ln ෍

𝑘∈𝐾

𝜋𝑘𝑥ෑ

𝑖=1

𝑁𝐼

෍

𝑐∈𝐶𝑖𝑘

𝜏𝑖𝑘𝑐 ⋅ Φ 𝐼𝑖 𝑥 ; 𝜇𝑖𝑘𝑐 , 𝜎𝑖𝑘𝑐
2

Expected complete-log-likelihood (expected joint):

𝔼 ln 𝑝 𝑰, 𝒁, 𝑺 𝜃

= ෍

𝑥∈Ω

෍

𝑘∈𝐾

𝑃𝑘𝑥
𝑚+1

ln 𝜋𝑘𝑥 +෍

𝑘∈𝐾

෍

𝑐∈𝐶𝑖𝑘

𝑃𝑖𝑘𝑐𝑥
𝑚+1

ln 𝜏𝑖𝑘𝑐 + lnΦ 𝐼𝑖 𝑥 ; 𝜇𝑖𝑘𝑐 , 𝜎𝑖𝑘𝑐
2
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Expectation-maximization algorithm

Expected complete-log-likelihood (expected joint):

𝔼 ln 𝑝 𝑰, 𝒁, 𝑺 𝜃

= ෍

𝑥∈Ω

෍

𝑘∈𝐾

𝑃𝑘𝑥
𝑚+1

ln 𝜋𝑘𝑥 +෍

𝑘∈𝐾

෍

𝑐∈𝐶𝑖𝑘

𝑃𝑖𝑘𝑐𝑥
𝑚+1

ln 𝜏𝑖𝑘𝑐 + lnΦ 𝐼𝑖 𝑥 ; 𝜇𝑖𝑘𝑐 , 𝜎𝑖𝑘𝑐
2

M-step: Maximizing 𝔼 ln 𝑝 𝑰, 𝒁, 𝑺 𝜃 with respect to 𝜃 =

𝜋𝑘𝑥 , 𝜏𝑖𝑘𝑐 , 𝜇𝑖𝑘𝑐 , 𝜎𝑖𝑘𝑐
2 gives

𝜋𝑘𝑥
𝑚+1

= 𝑃𝑘𝑥
𝑚+1

and 𝜋𝑘
𝑚+1

=
σ𝑥∈Ω 𝑃𝑘𝑥

𝑚+1

σ𝑥∈Ω σ𝑘∈𝐾 𝑃𝑘𝑥
𝑚+1 without spatial regularization

𝜏𝑖𝑘𝑐
𝑚+1

=
σ𝑥∈Ω𝑃𝑖𝑘𝑐𝑥

𝑚+1

σ𝑥∈Ωσ𝑐∈𝐶𝑖𝑘
𝑃𝑖𝑘𝑐𝑥

𝑚+1

𝜇𝑖𝑘𝑐
𝑚+1

=
σ𝑥∈Ω 𝐼𝑖 𝑥 𝑃𝑖𝑘𝑐𝑥

𝑚+1

σ𝑥∈Ω𝑃𝑖𝑘𝑐𝑥
𝑚+1

𝜎𝑖𝑘𝑐
2 𝑚+1

=
σ𝑥∈Ω 𝐼𝑖 𝑥 − 𝜇𝑖𝑘𝑐

𝑚+1
2
𝑃𝑖𝑘𝑐𝑥

𝑚+1

σ𝑥∈Ω𝑃𝑖𝑘𝑐𝑥
𝑚+1
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Spatial regularization

Motivation: Voxels with the same intensity distribution in 

medical images can come from different structures.

Probabilistic atlases:

𝜋𝑘𝑥 ∝ 𝜋𝑘 ⋅ 𝑝 𝐴𝑘𝑥
where 𝑝 𝐴𝑘𝑥 = 𝑝𝐴 𝑠 𝑥 = 𝑘 .
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Spatial regularization

M-step with probabilistic atlas: Maximize 𝔼 ln 𝑝 𝑰, 𝒁, 𝑺 𝜃

with respect to the proportion parameters 𝜋𝑘 :

𝔼 ln 𝑝 𝑰, 𝒁, 𝑺 𝜃 = ෍

𝑥∈Ω

෍

𝑘∈𝐾

𝑃𝑘𝑥
𝑚+1

ln 𝜋𝑘𝑥 + const.

where 

෍

𝑥∈Ω

෍

𝑘∈𝐾

𝑃𝑘𝑥
𝑚+1

ln 𝜋𝑘𝑥 = ෍

𝑥∈Ω

෍

𝑘∈𝐾

𝑃𝑘𝑥
𝑚+1

ln 𝜋𝑘𝑝 𝐴𝑘𝑥 − ln෍

𝑗∈𝐾

𝜋𝑗𝑝 𝐴𝑗𝑥
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Initialization

Parameters are initialized based on the atlas prior probabilities

𝜋𝑘
0
=

σ𝑥 𝑝 𝐴𝑘𝑥
σ𝑙∈𝐾σ𝑥 𝑝 𝐴𝑙𝑥

𝜏𝑖𝑘𝑐
0
=

1

𝐶𝑖𝑘

𝜇𝑖𝑘𝑐
0
= ቐ

𝜇𝑖𝑘
0
+ 𝑎 𝜎𝑖𝑘

0
, |𝐶𝑖𝑘 ≥ 2|

𝜇𝑖𝑘
0
, |𝐶𝑖𝑘 = 1|

𝜎𝑖𝑘𝑐
0

2
= 𝐶𝑖𝑘 𝜎𝑖𝑘

0
2

where 𝜇𝑖𝑘
0
=

σ𝑥 𝐼𝑖 𝑥 𝑝 𝐴𝑘𝑥
σ𝑥 𝑝 𝐴𝑘𝑥

, and 𝜎𝑖𝑘
0

2
=

σ𝑥 𝐼𝑖 𝑥 −𝜇𝑖𝑘
0 2

𝑝 𝐴𝑘𝑥

σ𝑥 𝑝 𝐴𝑘𝑥
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Generalized EM (GEM)

The M-step yields the same solution for the segmentation 

parameters 𝜃 𝑚+1 as in the case of the independent model

However, the M-step remains intractable for the MRF 

parameters Φ. Instead of aiming to maximize ℒ 𝑞, Θ with 

respect to Φ, the GEM seeks to change the parameters in such 

a way as to increase its value.

Expectation conditional maximization (ECM) partitions the 

parameters into groups, and the M-step is broken down into 

multiple steps each of which involves optimizing one of the 

subset with the remainder held fixed.
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Registration in MvMM

The motion shift of a slice against the common space.

The motion shift of a slice is modelled by a rigid 

transformation:

𝑝 𝐼𝑖 𝑥 𝑐𝑖𝑘; 𝜃, 𝐺𝑖,𝑠 = Φ𝑖𝑘𝑐 𝐼𝑖 𝐺𝑖,𝑠 𝑥

where 𝐺𝑖,𝑠 are the transformations for correcting slices.
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Registration in MvMM

The misalignment of the atlas against the common space

Introduce the atlas deformation 𝐷 for correcting the mis-

registration:

𝑝𝐴 𝑠 𝑥 = 𝑘 𝐷 = 𝑝𝐴 𝑠 𝐷 𝑥 = 𝑘 = 𝐴𝑘 𝐷 𝑥 , 𝑘 = 1,… , 𝐾

For the independent model, the log-likelihood is 

reformulated as:

ℓ 𝜃, 𝐷, 𝐺𝑖,𝑠 = ෍

𝑥∈Ω

ln ෍

𝑘∈𝐾

𝜋𝑘𝑥|𝐷ෑ

𝑖=1

𝑁𝐼

෍

𝑐∈𝐶𝑖𝑘

𝜏𝑖𝑘𝑐 ⋅ Φ𝑖𝑘𝑐 𝐼𝑖 𝐺𝑖,𝑠 𝑥
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Iterative Conditional Mode (ICM)

ICM optimizes the segmentation and registration parameters

alternately

• Update segmentation parameters 𝜃 by EM algorithm

• E−step

• M−step

• Update registration parameters 𝐷, 𝐺𝑖,𝑠 by gradient ascent of the

log−likelihood
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Hetero-Coverage Multi-Modality Images

In medical imaging, data from different acquisitions can 

generally have different resolutions and coverage of the ROI.

The ROI of the subject is divided into 𝑁𝑠𝑟 non-overlapping 

sub-regions Ω𝑣: 𝑣 = 1,… ,𝑁𝑠𝑟 and Ω = 𝑣=1ڂ
𝑁𝑠𝑟 Ω𝑣.
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Hetero-Coverage Multi-Modality Images

Hetero-coverage log-likelihood:

ℓ 𝑰 𝜃 = ෍

𝑣=1

𝑁𝑠𝑟

෍

𝑥∈Ω𝑣

ln ෍

𝑘∈𝐾

𝜋𝑘𝑥ෑ

𝑖=1

𝑁𝐼

෍

𝑐∈𝐶𝑖𝑘

𝜏𝑖𝑘𝑐 ⋅ Φ𝑖𝑘𝑐 𝐼𝑖 𝑥

The optimization of the segmentation parameters is similar to 

the case of congruent data:

𝑃𝑘𝑥
𝑚+1

=
𝑝 𝑰𝑣 𝑥 𝑘𝑥; 𝜃

𝑚 𝜋𝑘𝑥
𝑚

σ𝑙∈𝐾 𝑝 𝑰𝑣 𝑥 𝑙𝑥; 𝜃
𝑚 𝜋𝑙𝑥

𝑚

𝜏𝑖𝑘𝑐
𝑚+1

=
σ𝑥∈Ω𝐼𝑖

𝑃𝑖𝑘𝑐𝑥
𝑚+1

σ𝑥∈Ω𝐼𝑖
σ𝑐∈𝐶𝑖𝑘

𝑃𝑖𝑘𝑐𝑥
𝑚+1

𝜇𝑖𝑘𝑐
𝑚+1

=
σ𝑥∈Ω𝐼𝑖

𝐼𝑖 𝑥 𝑃𝑖𝑘𝑐𝑥
𝑚+1

σ𝑥∈Ω𝐼𝑖
𝑃𝑖𝑘𝑐𝑥

𝑚+1

𝜎𝑖𝑘𝑐
2 𝑚+1

=
σ𝑥∈Ω𝐼𝑖

𝐼𝑖 𝑥 − 𝜇𝑖𝑘𝑐
𝑚+1

2
𝑃𝑖𝑘𝑐𝑥

𝑚+1

σ𝑥∈Ω𝐼𝑖
𝑃𝑖𝑘𝑐𝑥

𝑚+1
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Experiment and demonstration

Data: MSCMR dataset

Experimental setup: 

• Mono-modality synthetic data from the same image slice

• ‘patient1_DE_image_slice12’

• Intra-patient multi-modality image slices

• ‘patient1_DE_image_slice12’, ‘patient1_C0_image_slice5’, 

‘patient1_T2_image_slice3’
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Experiment and demonstration

Initialization
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Experiment and demonstration

Initialization
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Experiment and demonstration

Forward
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Experiment and demonstration

Forward
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Experiment and demonstration

EM update
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Experiment and demonstration

EM update
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Experiment and demonstration

Likelihood function
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Experiment and demonstration

Data preprocessing:
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Experiment and demonstration

Optimization
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Conclusion

Probabilistic graphical model integrates inference and learning, which 

combines segmentation and registration in a unified framework.

Generative modelling facilitates combined computing from multivariate 

images by presuming suitable conditional independences and designating 

proper data generating distributions.

Further reading:

• Zhuang, Xiahai. "Multivariate mixture model for myocardial segmentation 

combining multi-source images." IEEE transactions on pattern analysis and 

machine intelligence 41, no. 12 (2019): 2933-2946.

• Blaiotta, Claudia, Patrick Freund, M. Jorge Cardoso, and John Ashburner. 

"Generative diffeomorphic modelling of large MRI data sets for probabilistic 

template construction." NeuroImage 166 (2018): 117-134.

• Bishop, Christopher M. Pattern recognition and machine learning. springer, 

2006.

• Koller, Daphne, and Nir Friedman. Probabilistic graphical models: 

principles and techniques. MIT press, 2009.
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Thank You ！


